class: center, middle ## Estimation via Bootstrapped Confidence Intervals <img src="img/DAW.png" width="450px"/> <span style="color: #91204D;"> .large[Kelly McConville | Math 141 | Week 8 | Fall 2020] </span> --- ## Announcements/Reminders * No lab due this week. * PA 2 by end of day Friday. * Note: Updated the [due dates for PA 3 and the Final PA on the website](https://reed-statistics.github.io/math141f20/due_dates.html). --- ## Week 8 Topics * Estimation ********************************************* ## Goals for Today * Percentile method bootstrapped confidence intervals * Constructing CIs in `R` * Interpretation of confidence --- ### Sampling Dist Versus Bootstrap Dist * Data needed: <br> <br> <br> -- * Center: <br> <br> <br> -- * Spread: --- ### Bootstrapped SE-Method Confidence Intervals **95% CI Form**: $$ \mbox{statistic} \pm 2\mbox{SE} $$ -- We approximate `\(\mbox{SE}\)` with `\(\widehat{\mbox{SE}}\)` = the standard deviation of the bootstrapped statistics. -- Caveats: * Assuming a random sample -- * Even with random samples, sometimes we get non-representative samples. Bootstrapping can't fix that. -- * Assuming the bootstrap distribution is bell-shaped and symmetric --- ### Percentile Method Confidence Interval If I want a P% confidence interval, I find the bounds of the middle P% of the bootstrap distribution. --- class: inverse, center, middle ### Let's see how to calculate these confidence intervals in R with the confidenceIntervals.Rmd handout. --- ### What do we mean by confidence? CI: Interval of plausible values for the parameter -- I am P% confident that the true parameter is in the computed interval. -- <img src="img/cis.png" width="30%" style="display: block; margin: auto;" />