Introduction to the Grammar of Graphics

Nate Wells

Math 141, 1/29/21

Outline

In this lecture, we will...

Outline

In this lecture, we will. . .

- Motivate intentional data visualization
- Discuss the Grammar of Graphics
- Decompose particular graphics using the GG paradigm

Section 1

Data Visualization

Why construct a graph?

- Even small data sets are big. We need to summarize the data.

Why construct a graph?

- Even small data sets are big. We need to summarize the data.
- Humans are best at finding patterns in visual media.

Why construct a graph?

- Even small data sets are big. We need to summarize the data.
- Humans are best at finding patterns in visual media.
- Graphs allow us to compare and explore relationships between variables.

Why construct a graph?

- Even small data sets are big. We need to summarize the data.
- Humans are best at finding patterns in visual media.
- Graphs allow us to compare and explore relationships between variables.
- Most importantly, graphs tell a compelling story.

Graphs Gone Awry: The Challenger Disaster

- On January 27th, 1986, engineers from Morton Thiokol recommended NASA delay launch of space shuttle Challenger due to cold weather.

Graphs Gone Awry: The Challenger Disaster

- On January 27th, 1986, engineers from Morton Thiokol recommended NASA delay launch of space shuttle Challenger due to cold weather.
- Believed cold weather impacted the o-rings that held the rockets together.
- Used 13 charts in their argument.

Graphs Gone Awry: The Challenger Disaster

- On January 27th, 1986, engineers from Morton Thiokol recommended NASA delay launch of space shuttle Challenger due to cold weather.
- Believed cold weather impacted the o-rings that held the rockets together.
- Used 13 charts in their argument.
- After a two hour conference call, the engineer's recommendation was overruled due to lack of persuasive evidence and the launch proceeded.

Graphs Gone Awry: The Challenger Disaster

- On January 27th, 1986, engineers from Morton Thiokol recommended NASA delay launch of space shuttle Challenger due to cold weather.
- Believed cold weather impacted the o-rings that held the rockets together.
- Used 13 charts in their argument.
- After a two hour conference call, the engineer's recommendation was overruled due to lack of persuasive evidence and the launch proceeded.
- The Challenger exploded 73 seconds into launch.

The Challenger Charts

- Here is one of those charts:

The Challenger Charts

- Here is one of those charts:

$$
\begin{aligned}
& \text { BLOW BY HLSTDRY } \\
& \text { SRM-IS WORST BLOW-BY } \\
& 02 \text { CASE JONTS }\left(80^{\circ}\right) \text {, (} 110^{\circ} \text {) ARC } \\
& 0 \text { MNCH WORSE VISUALLY THAN SRM-2L } \\
& \text { SRM } 22 \text { BLOW-DY } \\
& 02 C A S E ~ N O I N T S ~(~ \\
& 0
\end{aligned}
$$

MOTOR	MBT	$A M B$	O-RING	WIND
DM-4	68	36	47	10 mPH
Dm-z	76	45	52	10 mPH
Qm-3	72.5	40	48	10 mPH
Qm-4	76	48	51	10 mPH
SRM-15	52	64	53	10 mPH
SRM-22	77	78	75	10 mpH
SRM-25	55	26	$\begin{aligned} & 29 \\ & 27 \end{aligned}$	10 mPH 25 mPH

The Challenger Charts

- Here is another of those charts:

The Challenger Charts

- Here is another of those charts:

History of O-Ring Damage in Field Jointe

A Better Graph?

- The following is a graphic created in RStudio from Edward Tufte's data.

A Better Graph?

- The following is a graphic created in RStudio from Edward Tufte's data.

With Context

- And this graphic further emphasizes the direction of the trend.

With Context

- And this graphic further emphasizes the direction of the trend.

Section 2

The Grammar of Graphics

The Guiding Principle

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

The Guiding Principle

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

$\frac{\text { data }}{}$	$\frac{\text { aesthetics }}{}$	geometric object
Planet Name	x position	bar
Planet Diameter	y height	bar
Planet Name	color	bar

The Guiding Principle

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

$\frac{\text { data }}{}$	$\frac{\text { aesthetics }}{}$	geometric object
Planet Name	x position	bar
Planet Diameter	y height	bar
Planet Name	color	bar

```
ggplot(data = planets_df) +
    geom_bar(stat = "identity", mapping = aes(x = name, y = diameter, fill = name)
```


GG Definitions

- data: data frame that contains the raw data and variables of interest

GG Definitions

- data: data frame that contains the raw data and variables of interest
- geom: geometric shape that the data are mapped to. Can be points, lines, bars, etc.

GG Definitions

- data: data frame that contains the raw data and variables of interest
- geom: geometric shape that the data are mapped to. Can be points, lines, bars, etc.
- aesthetic: visual properties of the geom object, like x position, y position, color, fill, shape

GG Definitions

- data: data frame that contains the raw data and variables of interest
- geom: geometric shape that the data are mapped to. Can be points, lines, bars, etc.
- aesthetic: visual properties of the geom object, like x position, y position, color, fill, shape
- scale: controls how data are mapped to the visual values of the aesthetic.
i.e. specifying particular colors or shapes

GG Definitions

- data: data frame that contains the raw data and variables of interest
- geom: geometric shape that the data are mapped to. Can be points, lines, bars, etc.
- aesthetic: visual properties of the geom object, like x position, y position, color, fill, shape
- scale: controls how data are mapped to the visual values of the aesthetic.
i.e. specifying particular colors or shapes
- guide: a legend to help user convert visual display back to the data

Plotting the Planets

Consider the planets data frame, planets_df:

name	type	diameter	rotation	rings	distance
Mercury	Terrestrial planet	0.382	58.64	FALSE	0.4
Venus	Terrestrial planet	0.949	-243.02	FALSE	0.7
Earth	Terrestrial planet	1.000	1.00	FALSE	1.0
Mars	Terrestrial planet	0.532	1.03	FALSE	1.5
Jupiter	Gas giant	11.209	0.41	TRUE	5.2
Saturn	Gas giant	9.449	0.43	TRUE	9.5
Uranus	Gas giant	4.007	-0.72	TRUE	19.2
Neptune	Gas giant	3.883	0.67	TRUE	30.1

Plotting the Planets

Consider the planets data frame, planets_df:

name	type	diameter	rotation	rings	distance
Mercury	Terrestrial planet	0.382	58.64	FALSE	0.4
Venus	Terrestrial planet	0.949	-243.02	FALSE	0.7
Earth	Terrestrial planet	1.000	1.00	FALSE	1.0
Mars	Terrestrial planet	0.532	1.03	FALSE	1.5
Jupiter	Gas giant	11.209	0.41	TRUE	5.2
Saturn	Gas giant	9.449	0.43	TRUE	9.5
Uranus	Gas giant	4.007	-0.72	TRUE	19.2
Neptune	Gas giant	3.883	0.67	TRUE	30.1

Describe how to create a plot of distance vs. diameter.

Plotting the Planets

```
ggplot(data = planets_df, mapping = aes(x = distance, y = diameter)) +
    geom_point()
```


Example 1 Graphic

The Three Types Of Anne Hathaway Movies

Inflation adjusted domestic box office vs. Rotten Tomatoes score

Example 1

(1) What is the story this graphic is telling?
(2) What are the variables here?
(3) What geom are the variables mapped to?
(4) What are the aesthetics of the geom? Which variable sets the value of that aesthetic?
© What additional context does this graphic provide?

The Three Types Of Anne Hathaway Movies
Inflation adjusted domestic box office vs. Rotten Tomatoes score

Y FIVETHIRTYEIGHT
SOURCE: ROTTEN TOMATOES. OPUS DATA

Example 2 Graphic

Sexual harassment charges, by industry

Among charges filed by women, fiscal years 2005-2015

INDUSTRY	CHARGES FILED
Accommodation and food services	4,801
Retail trade	$4,380 \square$
Health care and social assistance	3,898
Manufacturing	3,741
Office administration and waste management	$2,350 \square$
Public administration	2,239
Professional, scientific and technical services	1,944
Transportation and warehousing	1,601
Finance and insurance	$1,380 \square$
Educational services	1,340
Other services (except public administration)	1,003
Information	962
Construction	774
Wholesale trade	752
Real estate rental and leasing	611
Arts, entertainment and recreation	537
Agriculture, forestry, fishing and hunting	276
Management of companies and enterprises	213
Utilities	211
Mining	157

[^0]SOURCE: EOUAL EMPIOYMENT OPPDRTUNITY COMMISSION

Example 2

(1) What is the story this graphic is telling?
(2) What are the variables here?
(3) What geom are the variables mapped to?
(4) What are the aesthetics of the geom? Which variable sets the value of that aesthetic?
(5) What additional context does this graphic provide?

Sexual harassment charges, by industry
Among charges filed by women, fiscal years 2005-2015

INDUSTEY	CHARGES FILED	
Accommodation and food services	4,801	
Retail trade	4,380	
Health care and social assistance	3,898	
Manufacturing	3.741	
Office administration and waste management	2,350	
Public administration	2,239	
Professional, scientific and technical services	1,944	
Transportation and warehousing	1,601 \square	
Finance and insurance	$1,380 \square$	
Educational services	$1,340 \square$	
Other services (except public administration)	1.003	
Information	962 -	
Construction	774	
Wholesale trade	752	
Real estate rental and leasing	611	
Arts, entertainment and recreation	537	
Agriculture, forestry, fishing and hunting	276	
Management of companies and enterprises	213 \|	
Utilities	211 \|	
Mining	157 \|	

Not including 35,304 charges filed without a specfied industry
SOURCE: EQUAL EMPLOYMENT OPPORTUNITY COMMISSION

Example 3 Graphic

FiveThirtyEight

Who's ahead in the national polls?

An updating average of 2020 presidential general election polls, accounting for each poll's quality, sample size and recency

Polling averages are adjusted based on state and national polls, which means candidates' averages can shift even if no new polls have been added to this page. Read more about the methodology.

Example 3

(1) What is the story this graphic is telling?

FiveThirtyEight \quad y f
(2) What are the variables here?
(3) What geom are the variables mapped to?
(4) What are the aesthetics of the geom? Which variable sets the value of that aesthetic?
© What additional context does this graphic provide?

Who's ahead in the national polls?
An updating average of 2020 presidential general election polls, accounting for each poll's quality, sample size and recency

Example 4 Graphic

Example 4

(1) What is the story this graphic is telling?
(2) What are the variables here?
(3) What geom are the variables mapped to?
(4) What are the aesthetics of the geom? Which variable sets the value of that aesthetic?
© What additional context does this
 graphic provide?

Best Practices for Graphics

- Determine what story your graphic should tell. And ensure that all aspects of your graphic serve this purpose.

Best Practices for Graphics

- Determine what story your graphic should tell. And ensure that all aspects of your graphic serve this purpose.
- Label axes and units for improved clarity.

Best Practices for Graphics

- Determine what story your graphic should tell. And ensure that all aspects of your graphic serve this purpose.
- Label axes and units for improved clarity.
- Include a legend to translate from aesthetics to variables.

Best Practices for Graphics

- Determine what story your graphic should tell. And ensure that all aspects of your graphic serve this purpose.
- Label axes and units for improved clarity.
- Include a legend to translate from aesthetics to variables.
- Specify your data source for reproducibility/verification.

Best Practices for Graphics

- Determine what story your graphic should tell. And ensure that all aspects of your graphic serve this purpose.
- Label axes and units for improved clarity.
- Include a legend to translate from aesthetics to variables.
- Specify your data source for reproducibility/verification.
- Minimize/eliminate extraneous elements that do not serve main purpose.

[^0]: Not including 35,304 charges filed without a specified industry

