Introduction to the Grammar of Graphics II

Nate Wells

Math 141, 2/1/21

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Introduce the ggplot2 package for R graphics
- Create scatterplots and linegraphs

Section 1

The ggplot2 Package

The ggplot2 syntax

- We will use the ggplot function in the ggplot2 package for data vizualization in accordance with the grammar of graphics.

The ggplot2 syntax

- We will use the ggplot function in the ggplot2 package for data vizualization in accordance with the grammar of graphics.
- Recall the guiding principle:

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

The ggplot2 syntax

- We will use the ggplot function in the ggplot2 package for data vizualization in accordance with the grammar of graphics.
- Recall the guiding principle:

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

- The code for graphics will (almost) always take the following general form:
ggplot(data = ---, mapping $=$ aes(---)) + geom_---(---)

The Planets

Let's take a look at the planets data frame planets_df using the glimpse function: glimpse(planets_df)
\#\# Rows: 8
\#\# Columns: 6
\#\# \$ name <fct> Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune
\#\# \$ type <fct> Terrestrial planet, Terrestrial planet, Terrestrial planet...
\#\# \$ diameter <dbl> 0.382, 0.949, 1.000, 0.532, 11.209, 9.449, 4.007, 3.883
\#\# \$ rotation <dbl> 58.64, $-243.02,1.00,1.03,0.41,0.43,-0.72,0.67$
\#\# \$ rings <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE
\#\# \$ distance <dbl> 0.4, 0.7, 1.0, 1.5, 5.2, 9.5, 19.2, 30.1

Plotting the Planets

- Create a plot of distance vs. diameter based on the planets_df data frame.

Plotting the Planets

- Create a plot of distance vs. diameter based on the planets_df data frame. ggplot(data $=$ planets_df, mapping $=$ aes(x = distance, y = diameter)) + geom_point ()

Why ggplot?

- Several other applications have capability of plotting graphics.

Why ggplot?

- Several other applications have capability of plotting graphics.
- Excel and Google Spreadsheets each have separate buttons to produced bar plots, scatter plots, line plots, etc. from data sets.

Why ggplot?

- Several other applications have capability of plotting graphics.
- Excel and Google Spreadsheets each have separate buttons to produced bar plots, scatter plots, line plots, etc. from data sets.
- What advantages does ggplot2 (and the Grammar of Graphics) have over these other tools?

Why ggplot?

- Several other applications have capability of plotting graphics.
- Excel and Google Spreadsheets each have separate buttons to produced bar plots, scatter plots, line plots, etc. from data sets.
- What advantages does ggplot2 (and the Grammar of Graphics) have over these other tools?
- Control
- Intentionaility
- Ability to create publication quality graphs with minimal tuning

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)
(1) Scatterplots
(2) Linegraphs
(3) Histograms
(4) Boxplots
(5) Barplots

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)
(1) Scatterplots
(2) Linegraphs
(3) Histograms
(4) Boxplots
(5) Barplots
- We'll use a common data set to investigate each graph: the Portland Biketown data
biketown <read_csv("biketown.csv")

Biketown Preview

- First, let's preview the data frame:

```
glimpse(biketown)
```

\#\# Rows: 9,999
\#\# Columns: 19
\#\# \$ RouteID
\#\# \$ PaymentPlan
\#\# \$ StartHub
\#\# \$ StartLatitude
\#\# \$ StartLongitude
\#\# \$ StartDate
\#\# \$ StartTime
\#\# \$ EndHub
\#\# \$ EndLatitude
\#\# \$ EndLongitude
\#\# \$ EndDate
\#\# \$ EndTime
\#\# \$ TripType
\#\# \$ BikeID
\#\# \$ BikeName
\#\# \$ Distance_Miles
\#\# \$ Duration
\#\# \$ RentalAccessPath
<dbl> 4074085, 3719219, 3789757, 3576798, 3459987, 39476...
<chr> "Subscriber", "Casual", "Casual", "Subscriber", "C...
<chr> "SE Elliott at Division", "SW Yamhill at Director ...
<dbl> 45.50513, 45.51898, 45.52990, 45.52389, 45.53028, ...
<dbl> -122.6534, -122.6813, -122.6628, -122.6722, -122.6...
<chr> "8/17/2017", "7/22/2017", "7/27/2017", "7/12/2017"...
<time> 10:44:00, 14:49:00, 14:13:00, 13:23:00, 19:30:00,...
<chr> "Blues Fest - SW Waterfront at Clay - Disabled", "... <dbl> 45.51287, 45.52142, 45.55902, 45.53409, 45.52990, ... <dbl> -122.6749, -122.6726, -122.6355, -122.6949, -122.6...
<chr> "8/17/2017", "7/22/2017", "7/27/2017", "7/12/2017"... <time> 10:56:00, 15:00:00, 14:42:00, 13:38:00, 20:30:00,... <lgl> NA, NA... <dbl> 6163, 6843, 6409, 7375, 6354, 6088, 6089, 5988, 68... <chr> "0488 BIKETOWN", "0759 BIKETOWN", "0614 BIKETOWN",... <dbl> 1.91, $0.72,3.42,1.81,4.51,5.54,1.59,1.03,0 . .$.
<dbl> 11.500, 11.383, 28.317, 14.917, 60.517, 53.783, 23...
<chr> "keypad", "keypad", "keypad", "keypad", "keypad",

A Deeper Dive I

What do the first few entries look like?

A Deeper Dive I

What do the first few entries look like?
head(biketown)
\#\# \# A tibble: 6 x 19
\#\# RouteID PaymentPlan StartHub StartLatitude StartLongitude StartDate StartTime
\#\# <dbl> <chr> <chr> <dbl> <dbl> <chr> <time>

\#\# 1	4074085	Subscriber	SE Elli~	45.5	$-123.8 / 17 / 2017$
\#\# 2	3719219	Casual	SW Yamh~	45.5	$-123.7 / 22 / 2017$
\#\#	$14: 49$				
\# 3789757	Casual	NE Holl~	45.5	$-123.7 / 27 / 2017$	$14: 13$
\#\# 4376798	Subscriber	NW Couc~	45.5	$-123.7 / 12 / 2017$	$13: 23$
\#\# 5 3459987 Casual	NE 11th~	45.5	$-123.7 / 3 / 2017$	$19: 30$	
\#\# 6 3947695 Casual	SW Mood~	45.5	$-123.8 / 8 / 2017$	$10: 01$	

\#\# \# ... with 12 more variables: EndHub <chr>, EndLatitude <dbl>,
\#\# \# EndLongitude <dbl>, EndDate <chr>, EndTime <time>, TripType <lgl>,
\#\# \# BikeID <dbl>, BikeName <chr>, Distance_Miles <dbl>, Duration <dbl>, \#\# \# RentalAccessPath <chr>, MultipleRental <lgl>

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with $\$$

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with $\$$ planets_df\$diameter
\#\# [1] $0.382 \quad 0.949 \quad 1.000 \quad 0.532 \quad 11.209 \quad 9.449 \quad 4.007 \quad 3.883$

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with \$ planets_df\$diameter
\#\# [1] $0.3820 .949 \quad 1.000 \quad 0.53211 .209 \quad 9.449 \quad 4.007 \quad 3.883$
What do you think head(biketown\$Distance_Miles) will do?

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with \$ planets_df\$diameter
\#\# [1] $0.382 \quad 0.949 \quad 1.000 \quad 0.532 \quad 11.209 \quad 9.449 \quad 4.007 \quad 3.883$

What do you think head(biketown\$Distance_Miles) will do?
head (biketown\$Distance_Miles)
\#\# [1] $1.91 \quad 0.72 \quad 3.42 \quad 1.81 \quad 4.51 \quad 5.54$
To determine the variable type, use class
class(biketown\$Distance_Miles)
\#\# [1] "numeric"
class(biketown\$PaymentPlan)
\#\# [1] "character"

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with \$ planets_df\$diameter
\#\# [1] $0.3820 .949 \quad 1.000 \quad 0.53211 .209 \quad 9.449 \quad 4.007 \quad 3.883$
What do you think head(biketown\$Distance_Miles) will do?
head(biketown\$Distance_Miles)
\#\# [1] $1.91 \quad 0.72 \quad 3.42 \quad 1.81 \quad 4.51 \quad 5.54$
To determine the variable type, use class
class(biketown\$Distance_Miles)
\#\# [1] "numeric"
class (biketown\$PaymentPlan)
\#\# [1] "character"
What happens if we apply class to biketown?

A Deeper Dive II

To access 1 variable of a data set, separate the dataframe and variable name with \$ planets_df\$diameter
\#\# [1] $0.3820 .949 \quad 1.000 \quad 0.53211 .209 \quad 9.449 \quad 4.007 \quad 3.883$

What do you think head(biketown\$Distance_Miles) will do?
head(biketown\$Distance_Miles)
\#\# [1] $1.91 \quad 0.72 \quad 3.42 \quad 1.81 \quad 4.51 \quad 5.54$
To determine the variable type, use class
class(biketown\$Distance_Miles)
\#\# [1] "numeric"
class (biketown\$PaymentPlan)
\#\# [1] "character"
What happens if we apply class to biketown?
class(biketown)
\#\# [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

Section 2

Types of Graphics

Scatterplots

- Scatterplots show relationships between a pair of quantitative variables.

Scatterplots

- Scatterplots show relationships between a pair of quantitative variables.

- In particular, we are often interested in linear relationships.

Scatterplots

- Scatterplots show relationships between a pair of quantitative variables.

- In particular, we are often interested in linear relationships.

Linear Relationships

- Two variables have a positive relationship provided the values of one increase as the values of the other also increase.

Linear Relationships

- Two variables have a positive relationship provided the values of one increase as the values of the other also increase.

Linear Relationships

- Two variables have a negative relationship provided the values of one decrease as the values of the other also increase.

Linear Relationships

- Two variables have a negative relationship provided the values of one decrease as the values of the other also increase.

Linear Relationships

- What type of relationshop do we expect if the values of one variable decrease as the values of the other also decrease?

Linear Relationships

- What type of relationshop do we expect if the values of one variable decrease as the values of the other also decrease?

Non-Linear Relationships

- Of course, sometimes variables have strong association, but no linear relationship:

Non-Linear Relationships

- Of course, sometimes variables have strong association, but no linear relationship:

Creating Scatterplots

- In biketown data, what do you expect to be the relationship between Duration and Distance_Miles?

Creating Scatterplots

- In biketown data, what do you expect to be the relationship between Duration and Distance_Miles?

```
ggplot(data = biketown, mapping = aes(x = Duration, y = Distance_Miles)) +
    geom_point()
```


Creating Scatterplots

- In biketown data, what do you expect to be the relationship between Duration and Distance_Miles?

```
ggplot(data = biketown, mapping = aes(x = Duration, y = Distance_Miles)) +
    geom_point()
```


- Problems with the graphic?

Overplotting

- Overplotting occurs when a large number of points are plotted in close proximity, making it difficult to accurately distinguish true number of points in a region.

Overplotting

- Overplotting occurs when a large number of points are plotted in close proximity, making it difficult to accurately distinguish true number of points in a region.
- Can be corrected by making points more transparent via the alpha aesthetic:

Overplotting

- Overplotting occurs when a large number of points are plotted in close proximity, making it difficult to accurately distinguish true number of points in a region.
- Can be corrected by making points more transparent via the alpha aesthetic: ggplot(data $=$ biketown, mapping $=$ aes(x = Duration, $y=$ Distance_Miles)) + geom_point(alpha $=0.15$)

Overplotting II

- We can also focus on just part of the graph by controlling the limits of the axes:

Overplotting II

- We can also focus on just part of the graph by controlling the limits of the axes:

```
ggplot(data = biketown, mapping = aes(x = Duration, y = Distance_Miles)) +
    geom_point(alpha = .15)+
    scale_x_continuous(limits = c(0, 60))+
    scale_y_continuous(limits = c(0, 10))
```


Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.

Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.
- Consider the data set consisting of $(0,0),(0,0),(0,0),(0,0)$ and $(1,1)$:

Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.
- Consider the data set consisting of $(0,0),(0,0),(0,0),(0,0)$ and $(1,1)$:
ggplot(data $=$ jiggle_df, mapping $=$ aes $(x=x, y=y))+$ geom_point()

Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.
- Consider the data set consisting of $(0,0),(0,0),(0,0),(0,0)$ and $(1,1)$:
ggplot(data $=$ jiggle_df, mapping $=$ aes $(x=x, y=y))+$ geom_point()

- It looks like there are just 2 observations!

Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.
- Consider the data set consisting of $(0,0),(0,0),(0,0),(0,0)$ and $(1,1)$: ggplot(data $=$ jiggle_df, mapping $=$ aes $(x=x, y=y))+$ geom_jitter(width $=.05$, height $=.05)$

Overplotting III

- Alternatively, can manipulate data set by jittering points a small random amount so that they no longer lie on top of each other.
- Consider the data set consisting of $(0,0),(0,0),(0,0),(0,0)$ and $(1,1)$: ggplot(data $=$ jiggle_df, mapping $=$ aes $(x=x, y=y))+$ geom_jitter(width $=.05$, height $=.05)$

- To jitter points, use the layer geom_jitter (width = ..., height = ...) instead of geom_points()

Line Graphs

How do bike use patters change throughout the day?

Line Graphs

How do bike use patters change throughout the day?

```
biketown2 <- count(biketown, StartHour)
```

biketown2

```
## # A tibble: 24 x 2
## StartHour n
## <int> <int>
## 1 0 118
## 2 1 69
## 3 2 50
## 4 3 20
## 5 4 35
## 6 5 71
## 7 6 104
## 8 7 270
## 9 8 492
## 10 9 392
## # ... with 14 more rows
```


Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.
ggplot(data $=$ biketown2, mapping $=$ aes $(x=\operatorname{StartHour,~} \mathrm{y}=\mathrm{n}))+$ geom_line()

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.
ggplot(data $=$ biketown2, mapping $=$ aes $(x=$ StartHour, $y=n))+$ geom_line()

- To construct a line graph, use geom_line() with the aesthetic mapping aes ($\mathrm{x}=$... , y = ...).

