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Introduction to Linear Regression

Outline

In this lecture, we will. . .

• Introduce statistical modeling
• Investigate the linear model
• Discuss predictions and residuals
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Introduction to Linear Regression

Overview

“All models are wrong, but some are useful.”

— George Box, statistician

• Linear regression is both an accessible and potent tool in statistical analysis.

70

75

80

$0 $10,000 $20,000 $30,000 $40,000 $50,000
Income (GDP per Capita)

Li
fe

 E
xp

ec
ta

nc
y

continent

Africa

Americas

Asia

Europe

Oceania

How Does Income Effect Life Expectancy?

Nate Wells Linear Regression I Math 141, 2/25/21 4 / 17



Introduction to Linear Regression

Overview

“All models are wrong, but some are useful.”

— George Box, statistician
• Linear regression is both an accessible and potent tool in statistical analysis.

70

75

80

$0 $10,000 $20,000 $30,000 $40,000 $50,000
Income (GDP per Capita)

Li
fe

 E
xp

ec
ta

nc
y

continent

Africa

Americas

Asia

Europe

Oceania

How Does Income Effect Life Expectancy?

Nate Wells Linear Regression I Math 141, 2/25/21 4 / 17



Introduction to Linear Regression

Overview

“All models are wrong, but some are useful.”

— George Box, statistician
• Linear regression is both an accessible and potent tool in statistical analysis.

70

75

80

$0 $10,000 $20,000 $30,000 $40,000 $50,000
Income (GDP per Capita)

Li
fe

 E
xp

ec
ta

nc
y

continent

Africa

Americas

Asia

Europe

Oceania

How Does Income Effect Life Expectancy?

Nate Wells Linear Regression I Math 141, 2/25/21 4 / 17



Introduction to Linear Regression

Overview

“All models are wrong, but some are useful.”

— George Box, statistician
• Linear regression is both an accessible and potent tool in statistical analysis.

70

75

80

$0 $10,000 $20,000 $30,000 $40,000 $50,000
Income (GDP per Capita)

Li
fe

 E
xp

ec
ta

nc
y

continent

Africa

Americas

Asia

Europe

Oceania

How Does Income Effect Life Expectancy?

Nate Wells Linear Regression I Math 141, 2/25/21 5 / 17



Introduction to Linear Regression

Relationships for Quantitative Variables

• Quantitative variables, by nature, are amenable to algebraic manipulation.

• Given two quantitative variables X and Y , we construct a mathematical model that
expresses the values of Y as a function of the values of X :

Y = f (X)

• Linear functions are the simplest of all mathematical functions, and so are the starting
place for modeling

Y = β0 + β1X with β0, β1 fixed constants

• Of course, in the wild, the observed values of Y will not be perfectly predicted by the
values of X .

Y = β0 + β1X + ε where ε is the error
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Introduction to Linear Regression

Scatterplots and Linear Relationships I
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State−by−State Graduation and Poverty Rates

• Explanatory Variable:
• Poverty Rate (X)

• Response Variable:
• High School Graduation Rate (Y )

• Relationship:
• Linear, negative, moderately strong
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Introduction to Linear Regression

Scatterplots and Linear Relationships II
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State−by−State Graduation and Poverty Rates • Model (hand-fitted):

Ŷ = β0 + β1X = 96.2 − 0.9X

• Hat (Ŷ ) indicates this is an estimate of
Y

• Slope of β1 = −0.9 means every 1 unit
increase in Poverty corresponds to a 0.9
unit decrease on average in Graduation.

• Intercept of β0 = 96.2 means model
predicts graduation rate of 96.2% when
poverty rate is 0%.
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Introduction to Linear Regression

Scatterplots and Linear Relationships III
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State−by−State Graduation and Poverty Rates

• Model:

Ŷ = 96.2 − 0.9 · X

• What does the model predict to be the
graduation rate for a state with
theoretical poverty rate 7%?

Ŷ = 96.2 − 0.9 · 7 = 89.9
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Ŷ = 96.2 − 0.9 · 7 = 89.9

Nate Wells Linear Regression I Math 141, 2/25/21 10 / 17



Introduction to Linear Regression

Scatterplots and Linear Relationships III

80

84

88

90

92

5 7 10 15
Poverty Rate, X

H
ig

h 
S

ch
oo

l G
ra

du
at

io
n 

R
at

e,
 Y

State−by−State Graduation and Poverty Rates

• Model:
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Scatterplots and Linear Relationships IV
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State−by−State Graduation and Poverty Rates

• Model:

Ŷ = 96.2 − 0.9 · X

• Washington D.C. has a poverty rate of
16.8. What does the model predict is
D.C.’s graduation rate?

Ŷ = 96.2 − 0.9 · 16.8 = 81.1

But D.C.’s actual graduation rate is 86.0
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Ŷ = 96.2 − 0.9 · 16.8 = 81.1

But D.C.’s actual graduation rate is 86.0

Nate Wells Linear Regression I Math 141, 2/25/21 13 / 17



Introduction to Linear Regression

Residuals

• Residuals are the leftover variation in the data after accounting for model fit.
• Each observation (Xi ,Yi ) has its own residual ei , which is the difference between the
observed (Yi) and predicted (Ŷi) value:

ei = Yi − Ŷi
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State−by−State Graduation and Poverty Rates, with Residual Heights

D.C.’s residual is
e = Y − Ŷ = 86 − 81.1 = 4.9
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Introduction to Linear Regression

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:
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Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.
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