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Outline

In this lecture, we will. . .

• Introduce statistical modeling
• Investigate the linear model
• Discuss predictions and residuals
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Section 1

Introduction to Linear Regression
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Scatterplots and Linear Relationships

80

84

88

92

5 10 15
Poverty Rate, X

H
ig

h 
S

ch
oo

l G
ra

du
at

io
n 

R
at

e,
 Y

State−by−State Graduation and Poverty Rates

• Explanatory Variable:
• Poverty Rate (X)

• Response Variable:
• High School Graduation Rate (Y )

• Relationship:
• Linear, negative, moderately strong

• Model (hand-fitted):

Ŷ = β0 + β1X = 96.2− 0.9X
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Residuals

• Residuals are the leftover variation in the data after accounting for model fit.

• Each observation (Xi ,Yi ) has its own residual ei , which is the difference between the
observed (Yi) and predicted (Ŷi) value:

ei = Yi − Ŷi
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State−by−State Graduation and Poverty Rates, with Residual Heights

D.C.’s residual is
e = Y − Ŷ = 86− 81.1 = 4.9
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e = Y − Ŷ = 86− 81.1 = 4.9

Nate Wells Linear Regression II Math 141, 2/25/21 6 / 20



Introduction to Linear Regression Fitting a Line by Least-Squares Regression

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

D.C.
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Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.
• Tighter clustering around the horizontal axis indicates stronger fit.
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Quantifying Goodness-of-Fit

• Correlation R describes the strength of a linear relationship between two variables,
and is always a number between −1 and 1.

If R is close to ... Then linear relationship is...
1 strong, positive
−1 strong, negative
0 weak

• Correlation can be computed via formula using the mean and standard deviation of
each variable.

R = 1
n − 1

n∑
i=1

(xi − x̄
sx

)(yi − ȳ
sy

)
• But in practice, we will always use technology to compute R.
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Correlation

• Correlation gives a relative sense of the strength of a linear relationship

R = 0.33 R = 0.69

y

R = 0.98

y

R = 1.00

R = −0.08

y

R = −0.64

y

R = −0.92

y

R = −1.00

• In practice, correlation is. . .
• strong, if |R| > 0.7
• moderate, if 0.3 < |R| < 0.7
• weak, if |R| < 0.3
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Correlation is not Association

• Correlation measures strength of LINEAR relationship:

• Which of the following has the strongest correlation (largest value of |R|)?

(a) (b)

(c) (d)

• Answer: (b), not (a)
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Correlation isn’t the Whole Story

• Computing a correlation coefficient is no substitute for data visualization.

• All of the following have identical, strong positive correlation (R = 0.8):

I II III IV

5 10 15 5 10 15 5 10 15 5 10 15

5.0

7.5

10.0

12.5

x

y
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Section 2

Fitting a Line by Least-Squares Regression
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Measure for BEST Line

• The line of best fit to a scatterplot should minimize residuals, meaning:

• Option 1: Minimizing the sum of absolute values

|e1|+ |e2|+ · · ·+ |en|
• Option 2: Minimize the sum of squares

e21 + e22 + · · ·+ e2n
• Option 2 is usually preferred.

1 Most commonly used.
2 More computationally efficient.
3 Has theoretical advantages (by analogy with distance and pythagorean thm.)
4 Appropriately weights one large residuals as “worse” than many small ones.
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An Aside on Some Important Formulas

• You do not need to memorize these formulas

• But you should understand where they come from and what they mean

• Suppose x1, x2, . . . , xn are a list of numerica observations. . .
• The mean of this data set is

x̄ = x1 + x2 + · · ·+ xn

n

• The mean is a measure of center.

• The standard deviation of this data is

s =
√

(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2
n − 1

• The standard deviation is a measure of spread.
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A Formula for the Least Squares Regression Line

• Suppose n observations for variables X and Y are collected:

(x1, y1), (x2, y2), . . . , (xn, yn)
with means x̄ , ȳ and standard deviations sx , sy and correlation R.

• The Least Squares Regression Line modeling Y as a function of X is

Ŷ = β0 + β1X

where the slope β1 is given by
β1 = sy

sx
R

and where the intercept is given by

β0 = ȳ − β1x̄

Nate Wells Linear Regression II Math 141, 2/25/21 15 / 20
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Conditions for Using Linear Regression

In order to responsibly use linear regression. . .

1 Relationship between explanatory and response variables must be approximately linear.
(Linear)
• Check using scatterplot and/or residual plot

2 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)
• Check using histogram of residuals

3 The variability of residuals should be roughly constant across entire data set.
(Homoscedastic)
• Check using resdidual plot.

Nate Wells Linear Regression II Math 141, 2/25/21 16 / 20
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Checking Conditions I

• What condition is this linear model most
obviously violating?

a. Linearity
b. Normalacy
c. Homoscedasticity
d. Extreme Outliers
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Checking Conditions II

• What condition is this linear model most
obviously violating?

a. Linearity
b. Normalacy
c. Homoscedasticity
d. Extreme Outliers
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Checking Conditions II

• What condition is this linear model most
obviously violating?

a. Linearity
b. Normalacy
c. Homoscedasticity
d. Extreme Outliers
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