Linear Regression II

Nate Wells

Math 141, 2/25/21

Outline

In this lecture, we will...

Outline

In this lecture, we will. . .

- Introduce statistical modeling
- Investigate the linear model
- Discuss predictions and residuals

Section 1

Introduction to Linear Regression

Scatterplots and Linear Relationships

State-by-State Graduation and Poverty Rates

- Explanatory Variable:
- Poverty Rate (X)
- Response Variable:
- High School Graduation Rate (Y)
- Relationship:
- Linear, negative, moderately strong
- Model (hand-fitted):

$$
\hat{Y}=\beta_{0}+\beta_{1} X=96.2-0.9 X
$$

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation $\left(X_{i}, Y_{i}\right)$ has its own residual e_{i}, which is the difference between the observed $\left(Y_{i}\right)$ and predicted $\left(\hat{Y}_{i}\right)$ value:

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation $\left(X_{i}, Y_{i}\right)$ has its own residual e_{i}, which is the difference between the observed $\left(Y_{i}\right)$ and predicted $\left(\hat{Y}_{i}\right)$ value:

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

State-by-State Graduation and Poverty Rates, with Residual Heights

Poverty Rate, X

Residuals

- Residuals are the leftover variation in the data after accounting for model fit.
- Each observation $\left(X_{i}, Y_{i}\right)$ has its own residual e_{i}, which is the difference between the observed $\left(Y_{i}\right)$ and predicted $\left(\hat{Y}_{i}\right)$ value:

$$
e_{i}=Y_{i}-\hat{Y}_{i}
$$

State-by-State Graduation and Poverty Rates, with Residual Heights

- D.C.'s residual is

$$
e=Y-\hat{Y}=86-81.1=4.9
$$

Residual Plot

- To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot

- To visualize the degree of accuracy of a linear model, we use residual plots: Residual Plot for Graduation and Poverty Rates

Residual Plot

- To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

- Points preserve original x-position, but with y-position equal to residual.

Residual Plot

- To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

- Points preserve original x-position, but with y-position equal to residual.
- Tighter clustering around the horizontal axis indicates stronger fit.

Quantifying Goodness-of-Fit

- Correlation R describes the strength of a linear relationship between two variables, and is always a number between -1 and 1 .

Quantifying Goodness-of-Fit

- Correlation R describes the strength of a linear relationship between two variables, and is always a number between -1 and 1 .

If R is close to \ldots	Then linear relationship is...
1	strong, positive
-1	strong, negative
0	weak

Quantifying Goodness-of-Fit

- Correlation R describes the strength of a linear relationship between two variables, and is always a number between -1 and 1 .

If R is close to \ldots	Then linear relationship is...
1	strong, positive
-1	strong, negative
0	weak

- Correlation can be computed via formula using the mean and standard deviation of each variable.

Quantifying Goodness-of-Fit

- Correlation R describes the strength of a linear relationship between two variables, and is always a number between -1 and 1 .

If R is close to \ldots	Then linear relationship is...
1	strong, positive
-1	strong, negative
0	weak

- Correlation can be computed via formula using the mean and standard deviation of each variable.

$$
R=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

Quantifying Goodness-of-Fit

- Correlation R describes the strength of a linear relationship between two variables, and is always a number between -1 and 1 .

If R is close to \ldots	Then linear relationship is...
1	strong, positive
-1	strong, negative
0	weak

- Correlation can be computed via formula using the mean and standard deviation of each variable.

$$
R=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

- But in practice, we will always use technology to compute R.

Correlation

- Correlation gives a relative sense of the strength of a linear relationship

Correlation

- Correlation gives a relative sense of the strength of a linear relationship

- In practice, correlation is...
- strong, if $|R|>0.7$
- moderate, if $0.3<|R|<0.7$
- weak, if $|R|<0.3$

Correlation is not Association

- Correlation measures strength of LINEAR relationship:

Correlation is not Association

- Correlation measures strength of LINEAR relationship:
- Which of the following has the strongest correlation (largest value of $|R|$)?

(a)

(c)

(b)

(d)

Correlation is not Association

- Correlation measures strength of LINEAR relationship:
- Which of the following has the strongest correlation (largest value of $|R|$)?

(a)

(c)

(b)

(d)
- Answer: (b), not (a)

Correlation isn't the Whole Story

- Computing a correlation coefficient is no substitute for data visualization.

Correlation isn't the Whole Story

- Computing a correlation coefficient is no substitute for data visualization.
- All of the following have identical, strong positive correlation $(R=0.8)$:

Correlation isn't the Whole Story

- Computing a correlation coefficient is no substitute for data visualization.
- All of the following have identical, strong positive correlation $(R=0.8)$:

Section 2

Fitting a Line by Least-Squares Regression

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Option 2 is usually preferred.

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Option 2 is usually preferred.
(1) Most commonly used.

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Option 2 is usually preferred.
(1) Most commonly used.
(2) More computationally efficient.

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Option 2 is usually preferred.
(1) Most commonly used.
(2) More computationally efficient.
(3) Has theoretical advantages (by analogy with distance and pythagorean thm.)

Measure for BEST Line

- The line of best fit to a scatterplot should minimize residuals, meaning:
- Option 1: Minimizing the sum of absolute values

$$
\left|e_{1}\right|+\left|e_{2}\right|+\cdots+\left|e_{n}\right|
$$

- Option 2: Minimize the sum of squares

$$
e_{1}^{2}+e_{2}^{2}+\cdots+e_{n}^{2}
$$

- Option 2 is usually preferred.
(1) Most commonly used.
(2) More computationally efficient.
(3) Has theoretical advantages (by analogy with distance and pythagorean thm.)
(4) Appropriately weights one large residuals as "worse" than many small ones.

An Aside on Some Important Formulas

- You do not need to memorize these formulas

An Aside on Some Important Formulas

- You do not need to memorize these formulas
- But you should understand where they come from and what they mean

An Aside on Some Important Formulas

- You do not need to memorize these formulas
- But you should understand where they come from and what they mean
- Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are a list of numerica observations...
- The mean of this data set is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

An Aside on Some Important Formulas

- You do not need to memorize these formulas
- But you should understand where they come from and what they mean
- Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are a list of numerica observations...
- The mean of this data set is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The mean is a measure of center.
- The standard deviation of this data is

$$
s=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}}
$$

An Aside on Some Important Formulas

- You do not need to memorize these formulas
- But you should understand where they come from and what they mean
- Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are a list of numerica observations...
- The mean of this data set is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The mean is a measure of center.
- The standard deviation of this data is

$$
s=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}}
$$

- The standard deviation is a measure of spread.

A Formula for the Least Squares Regression Line

- Suppose n observations for variables X and Y are collected:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with means \bar{x}, \bar{y} and standard deviations s_{x}, s_{y} and correlation R.

A Formula for the Least Squares Regression Line

- Suppose n observations for variables X and Y are collected:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with means \bar{x}, \bar{y} and standard deviations s_{x}, s_{y} and correlation R.

- The Least Squares Regression Line modeling Y as a function of X is

$$
\hat{Y}=\beta_{0}+\beta_{1} X
$$

A Formula for the Least Squares Regression Line

- Suppose n observations for variables X and Y are collected:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with means \bar{x}, \bar{y} and standard deviations s_{x}, s_{y} and correlation R.

- The Least Squares Regression Line modeling Y as a function of X is

$$
\hat{Y}=\beta_{0}+\beta_{1} X
$$

where the slope β_{1} is given by

$$
\beta_{1}=\frac{s_{y}}{s_{x}} R
$$

A Formula for the Least Squares Regression Line

- Suppose n observations for variables X and Y are collected:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

with means \bar{x}, \bar{y} and standard deviations s_{x}, s_{y} and correlation R.

- The Least Squares Regression Line modeling Y as a function of X is

$$
\hat{Y}=\beta_{0}+\beta_{1} X
$$

where the slope β_{1} is given by

$$
\beta_{1}=\frac{s_{y}}{s_{x}} R
$$

and where the intercept is given by

$$
\beta_{0}=\bar{y}-\beta_{1} \bar{x}
$$

Conditions for Using Linear Regression

In order to responsibly use linear regression...

Conditions for Using Linear Regression

In order to responsibly use linear regression...
(1) Relationship between explanatory and response variables must be approximately linear. (Linear)

- Check using scatterplot and/or residual plot

Conditions for Using Linear Regression

In order to responsibly use linear regression...
(1) Relationship between explanatory and response variables must be approximately linear. (Linear)

- Check using scatterplot and/or residual plot
(2) The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0 . (Normal)
- Check using histogram of residuals

Conditions for Using Linear Regression

In order to responsibly use linear regression...
(1) Relationship between explanatory and response variables must be approximately linear. (Linear)

- Check using scatterplot and/or residual plot
(2) The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0 . (Normal)
- Check using histogram of residuals
(3) The variability of residuals should be roughly constant across entire data set. (Homoscedastic)
- Check using resdidual plot.

Checking Conditions I

- What condition is this linear model most obviously violating?
(3) Linearity
(6) Normalacy
© Homoscedasticity
(1.) Extreme Outliers

Checking Conditions I

- What condition is this linear model most obviously violating?
(3) Linearity
(5) Normalacy
c. Homoscedasticity
(1.) Extreme Outliers

Checking Conditions II

- What condition is this linear model most obviously violating?
(3) Linearity
(6) Normalacy
c. Homoscedasticity
(1.) Extreme Outliers

Checking Conditions II

- What condition is this linear model most obviously violating?
(3) Linearity
(6) Normalacy
c. Homoscedasticity
(1.) Extreme Outliers

