Introduction to the Grammar of Graphics III

Nate Wells

Math 141, 2/3/21

Outline

In this lecture, we will...

Outline

In this lecture, we will. . .

- Discuss Linegraphs, Histrograms, Boxplots, and Barplots
- Investigate some options for further customizing graphs

Section 1

Common Graphs using ggplot2

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)
(1) Scatterplots
(2) Linegraphs
(3) Histograms
(4) Boxplots
(5) Barplots

The Five Named Graphs

- We focus on just 5 graphs fundamental to statistics (although other types exist)
(1) Scatterplots
(2) Linegraphs
(3) Histograms
(4) Boxplots

5 Barplots

- We'll use a common data set to investigate each graph: the Portland Biketown data
biketown <-

```
read_csv("biketown.csv")
```


Line Graphs

How do bike use patterns change throughout the day?

Line Graphs

How do bike use patterns change throughout the day?

```
biketown2 <- count(biketown, StartHour)
```

biketown2

```
## # A tibble: 24 x 2
## StartHour n
## <int> <int>
## 1 0 118
## 2 1 69
## 3 2 50
## 4 3 20
## 5 4 35
## 6 5 71
## 7 6 104
## 8 7 270
## 9 8 492
## 10 9 392
## # ... with 14 more rows
```


Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.
ggplot(data $=$ biketown2, mapping $=$ aes $(x=\operatorname{StartHour}, \mathrm{y}=\mathrm{n}))+$ geom_line()

Line Graphs

- Frequently, we compare two quantitative variables where one variable represents time. It is illustrative to connect neighboring points with a smooth curve.
- These line graphs (or time series) provide stronger sequential and/or cyclic visual cues.
ggplot(data $=$ biketown2, mapping $=$ aes $(x=$ StartHour, $y=n))+$ geom_line()

- To construct a line graph, use geom_line() with the aesthetic mapping aes(x = ... , y = ...).

The Distribution of a Variable

- Consider the Distance variable in the biketown data set. What are its minimum, maximum, and central values?

The Distribution of a Variable

- Consider the Distance variable in the biketown data set. What are its minimum, maximum, and central values?
- What proportion of observations are "close" to these extremes?

The Distribution of a Variable

- Consider the Distance variable in the biketown data set. What are its minimum, maximum, and central values?
- What proportion of observations are "close" to these extremes?
- These questions can be answered by exploring the distribution of a variable, which is a representation of the unique values it takes along with the frequency it takes them.

Histograms

- Distributions are most commonly visualized by way of the histogram

Histograms

- Distributions are most commonly visualized by way of the histogram
- To create a histogram:
- Divide the x-axis into a sequence of equally-sized intervals (or bins).
- For each, count the number of observations falling in that interval.
- Draw bars with height equal to count and with width spanning the interval.

Histograms

- Distributions are most commonly visualized by way of the histogram
- To create a histogram:
- Divide the x-axis into a sequence of equally-sized intervals (or bins).
- For each, count the number of observations falling in that interval.
- Draw bars with height equal to count and with width spanning the interval.
ggplot(data $=$ biketown_short, mapping $=$ aes (x = Distance_Miles)) + geom_histogram(bins = 50, color = "White")

Histograms

- Distributions are most commonly visualized by way of the histogram
- To create a histogram:
- Divide the x-axis into a sequence of equally-sized intervals (or bins).
- For each, count the number of observations falling in that interval.
- Draw bars with height equal to count and with width spanning the interval.
ggplot(data $=$ biketown_short, mapping $=$ aes ($x=$ Distance_Miles)) + geom_histogram(bins = 50, color = "White")

- Minimimum? Maximum? Center? Spread?

The Shape of You (Distributions)

- Histograms also reveal qualitative information about the shape of a variable's distribution:

The Shape of You (Distributions)

- Histograms also reveal qualitative information about the shape of a variable's distribution:

Right-Skewed

Symmetric

Left-Skewed

The Shape of You (Distributions)

- Histograms also reveal qualitative information about the shape of a variable's distribution:

Right-Skewed

Bimodal

Symmetric

Unimodal

Left-Skewed

Flat

How many bins?

- The number of bins used can radically affect the shape of the histogram.

How many bins?

- The number of bins used can radically affect the shape of the histogram.
- Use bins= to set the number of bins in a histogram

How many bins?

- The number of bins used can radically affect the shape of the histogram.
- Use bins= to set the number of bins in a histogram
ggplot(data $=$ biketown_short, mapping $=$ aes $(x=$ Distance_Miles)) + geom_histogram(bins=10, color = "white")

The Effect of Bin Size

- Each of the following is a histogram for the same data, with different values for the bins = argument in geom_histogram()

The Effect of Bin Size

- Each of the following is a histogram for the same data, with different values for the bins = argument in geom_histogram()

How many bins?

- Alternatively, we can specify the width of bins using binwidth =

How many bins?

- Alternatively, we can specify the width of bins using binwidth = ggplot(data $=$ biketown_short, mapping $=$ aes($\mathrm{x}=$ Distance_Miles))+ geom_histogram(binwidth = 1, color = "white")


```
ggplot(data = biketown_short, mapping = aes(x = Distance_Miles))+
    geom_histogram(binwidth = 0.5, color = "white")
```


Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile ($Q 1$), Median, 3rd Quartile (Q3), Maximum.

Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile (Q1), Median, 3rd Quartile (Q3), Maximum.
- The median is a value so that 50% of data lies above it and 50% lies below.

Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile (Q1), Median, 3rd Quartile (Q3), Maximum.
- The median is a value so that 50% of data lies above it and 50% lies below.
- The 1st / 3rd quartiles are values so that $25 \% / 75 \%$ of data lies below it and 75% / 25% lies above.

Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile (Q1), Median, 3rd Quartile (Q3), Maximum.
- The median is a value so that 50% of data lies above it and 50% lies below.
- The 1st / 3rd quartiles are values so that 25% / 75% of data lies below it and 75% / 25% lies above.
- The median separates the data into two equal parts. Note $Q 1$ is also the median of the lower part, while Q3 is the median of the upper part.

Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile (Q1), Median, 3rd Quartile (Q3), Maximum.
- The median is a value so that 50% of data lies above it and 50% lies below.
- The 1st / 3rd quartiles are values so that $25 \% / 75 \%$ of data lies below it and 75% / 25% lies above.
- The median separates the data into two equal parts. Note $Q 1$ is also the median of the lower part, while Q3 is the median of the upper part.
- The interquartile range (IQR) is Q3 - Q1 and measures the spread of the middle 50% of the data.

Summary Statistics

- The five-number summary of a data set consists of: Minimum, 1st Quartile (Q1), Median, 3rd Quartile (Q3), Maximum.
- The median is a value so that 50% of data lies above it and 50% lies below.
- The 1st / 3rd quartiles are values so that 25% / 75% of data lies below it and 75% / 25% lies above.
- The median separates the data into two equal parts. Note $Q 1$ is also the median of the lower part, while Q3 is the median of the upper part.
- The interquartile range (IQR) is Q3 - Q1 and measures the spread of the middle 50% of the data.
- Taken together, the five-number summary provides a measure of center and spread of a data set.

Boxplots

- The five-number summary can be visualized by way of the boxplot.

Boxplots

- The five-number summary can be visualized by way of the boxplot.
- Consider the five number summary for Distance_miles in the biketown data

Boxplots

- The five-number summary can be visualized by way of the boxplot.
- Consider the five number summary for Distance_miles in the biketown data

Min	Q1	Median	Q3	Max
0	0.79	1.48	2.68	23.75

Boxplots

- The five-number summary can be visualized by way of the boxplot.
- Consider the five number summary for Distance_miles in the biketown data

Min	Q1	Median	Q3	Max
0	0.79	1.48	2.68	23.75

```
ggplot(data=biketown,
    mapping=aes(y=Distance_Miles))+
    geom_boxplot()
```

 (

Boxplots

- The five-number summary can be visualized by way of the boxplot.
- Consider the five number summary for Distance_miles in the biketown data

Min	Q1	Median	Q3	Max
0	0.79	1.48	2.68	23.75

```
ggplot(data=biketown,
    mapping=aes(y=Distance_Miles))+
    geom_boxplot()
```


Side-by-side Boxplots

- Often, we compare the distribution of a variable conditioned on values of a 2 nd.

Side-by-side Boxplots

- Often, we compare the distribution of a variable conditioned on values of a 2 nd .
- To do so, include an x-position aesthetic mapping from the $2 n d$ variable.

Side-by-side Boxplots

- Often, we compare the distribution of a variable conditioned on values of a $2 n d$.
- To do so, include an x-position aesthetic mapping from the 2 nd variable.
- To have boxes span horizontally, rather than vertically, add a coord_flip() layer.

Side-by-side Boxplots

- Often, we compare the distribution of a variable conditioned on values of a 2 nd .
- To do so, include an x-position aesthetic mapping from the 2 nd variable.
- To have boxes span horizontally, rather than vertically, add a coord_flip() layer. ggplot(data $=$ biketown, mapping $=$ aes($\mathrm{x}=$ PaymentPlan, $\mathrm{y}=$ Distance_Miles) $)+$ geom_boxplot()+ coord_flip()

Bar Charts

- Both Boxplots and Histograms show the distribution of quantitative variables.

Bar Charts

- Both Boxplots and Histograms show the distribution of quantitative variables.
- We use Bar Charts to visualize the distribution of categorical variables, whose values are broken down into distinct levels.

Bar Charts

- Both Boxplots and Histograms show the distribution of quantitative variables.
- We use Bar Charts to visualize the distribution of categorical variables, whose values are broken down into distinct levels.
- Investigate the distribution of bike use by month

Bar Charts

- Both Boxplots and Histograms show the distribution of quantitative variables.
- We use Bar Charts to visualize the distribution of categorical variables, whose values are broken down into distinct levels.
- Investigate the distribution of bike use by month

```
ggplot(data = biketown, mapping = aes(x = Month)) +
    geom_bar()
```


Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables.

Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables. ggplot (data $=$ biketown, mapping $=$ aes $(x=$ Month, fill = PaymentPlan)) + geom_bar()

Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables. ggplot(data $=$ biketown, mapping $=$ aes $(x=$ Month, fill $=$ PaymentPlan)) +
geom_bar()

- Each bar divided into count by fill variable.

Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables. ggplot(data $=$ biketown, mapping $=$ aes $(x=$ Month, fill = PaymentPlan)) +
geom_bar()

- Each bar divided into count by fill variable.
- Hard to make direct comparisons

Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables. ggplot (data $=$ biketown
mapping $=$ aes $(x=$ Month, fill = PaymentPlan)) geom_bar()

- Each bar divided into count by fill variable.
- Hard to make direct comparisons

```
ggplot(data = biketown,
        mapping = aes(x = Month,
        fill = PaymentPlan))
    geom_bar(position = "fill")
```


Segmented / Stacked Bar Charts

- Bar charts used to visualize the joint distribution of 2 categorical variables. ggplot (data $=$ biketown

$$
\begin{aligned}
\text { mapping }=\operatorname{aes}(x & =\text { Month } \\
& \text { fill }=\text { PaymentPlan }))
\end{aligned}
$$

geom_bar()

- Each bar divided into count by fill variable.
- Hard to make direct comparisons

```
ggplot(data = biketown,
```

ggplot(data = biketown,
mapping = aes(x = Month,
mapping = aes(x = Month,
fill = PaymentPlan))
fill = PaymentPlan))
geom_bar(position = "fill")

```
    geom_bar(position = "fill")
```


- Each bar divided into proportion by fill variable.

Facets

- Faceting is used to split one graphic into many smaller ones, based on the values of a categorical variable.

Facets

- Faceting is used to split one graphic into many smaller ones, based on the values of a categorical variable.

```
ggplot(data = biketown2, mapping = aes(x = StartHour, y = n)) +
    geom_line() +
    facet_wrap(~Month, ncol = 3)
```


Adding Context

- Adding titles and axes labels to graphs greatly improves clarity.

Adding Context

- Adding titles and axes labels to graphs greatly improves clarity.

Adding Context

- Adding titles, captions, and axis labels greatly improves clarity.

Adding Context

- Adding titles, captions, and axis labels greatly improves clarity.
ggplot(data = biketown2, mapping = aes(x = StartHour, $\mathrm{y}=\mathrm{n}$, color $=$ Month $)$) + geom_line() +
labs($\mathrm{x}=$ "Checkout Time (hours after midnight)", $\mathrm{y}=$ "Number of Checkouts", title = "Checkout frequencies throughout a day", caption = "Data from www.biketownpdx.com/system-data")

Checkout frequencies throughout a day

