Framework of Random Sampling

Nate Wells

Math 141, 3/10/21

Outline

In this lecture, we will...

Outline

In this lecture, we will. . .

- Review Monday's group sampling activity
- Discuss the framework for random sampling
- Investigate properties of the sampling distribution

Section 1

Sampling Activity

Sampling Activity Discussion

- What is the theoretical mean value for the data set of card values?
- How does the distribution of sample means compare to the distribution of card values?
- What is the relationship between the centers of the two distributions?
- Which distribution appears to have more variability?
- How do the shapes of the two distributions compare?
- What does the variability of sample means suggest about the means in repeated samples?

Section 2

The Sampling Distribution

Sampling Distribution

- Researchers are interested in the value of a parameter in a population and use a sample statistic as a point estimate for the paramter.

Sampling Distribution

- Researchers are interested in the value of a parameter in a population and use a sample statistic as a point estimate for the paramter.
- Ex: We may want to know the proportion p of Portland residents infected with COVID-19 on March 10th, 2021.
- We cannot easily take a census of all Portland residents, so we estimate p by using the proportion \hat{p} in a sample of 100 residents.
- The proportion p is a parameter, while the proportion \hat{p} is a statistic.

Sampling Distribution

- Researchers are interested in the value of a parameter in a population and use a sample statistic as a point estimate for the paramter.
- Ex: We may want to know the proportion p of Portland residents infected with COVID-19 on March 10th, 2021.
- We cannot easily take a census of all Portland residents, so we estimate p by using the proportion \hat{p} in a sample of 100 residents.
- The proportion p is a parameter, while the proportion \hat{p} is a statistic.
- The sample statistics form a data set, so have their own mean, standard deviation (called the standard error), and distribution (called the sampling distribution)
- Using theoretical tools, we can show that if the true proportion is $p=0.05$, then the sampling distribution for \hat{p} has mean $\mu=0.05$ and standard error

$$
S E=\sqrt{\frac{0.05 \cdot 0.95}{100}} \approx 0.02
$$

Sampling Distribution vs. Population Distribution

- For most sample statistics and sufficiently large sample sizes ($n \geq 30$), the sampling distribution will be approximately bell-shaped (even if the population is not)

Sampling Distribution vs. Population Distribution

- For most sample statistics and sufficiently large sample sizes ($n \geq 30$), the sampling distribution will be approximately bell-shaped (even if the population is not)
- Additionally, the sampling distribution will have lower variability than the population distribution.

Sampling Distribution vs. Population Distribution

- For most sample statistics and sufficiently large sample sizes ($n \geq 30$), the sampling distribution will be approximately bell-shaped (even if the population is not)
- Additionally, the sampling distribution will have lower variability than the population distribution.
- Both distributions will have the same center.

Sampling Distribution vs. Population Distribution

- For most sample statistics and sufficiently large sample sizes ($n \geq 30$), the sampling distribution will be approximately bell-shaped (even if the population is not)
- Additionally, the sampling distribution will have lower variability than the population distribution.
- Both distributions will have the same center.

Population Distribution

Sampling Distribution, $\mathrm{n}=100$

Why Use Sampling Distributions?

Why Use Sampling Distributions?

What we have:
Three samples, each of size $n=100$

Why Use Sampling Distributions?

What we want to know:
Population Distribution

What we have:
Three samples, each of size $n=100$

What we know about what we have:
Sampling Distribution, $\mathrm{n}=100$

Variability in Samples

- The standard error of the sample statistic measures variability between different samples.

Variability in Samples

- The standard error of the sample statistic measures variability between different samples.
- For approximately Normal distributions, about 95% of observations fall within two standard deviations of the mean.

Variability in Samples

- The standard error of the sample statistic measures variability between different samples.
- For approximately Normal distributions, about 95% of observations fall within two standard deviations of the mean.
- Since the sampling distribution is approximately Normal for most sample statistics, 95% of all sample statistics fall within 2 standard error units of the population mean.

Variability in Samples

- The standard error of the sample statistic measures variability between different samples.
- For approximately Normal distributions, about 95% of observations fall within two standard deviations of the mean.
- Since the sampling distribution is approximately Normal for most sample statistics, 95% of all sample statistics fall within 2 standard error units of the population mean.

Sampling Distribution, $n=100$

Standard Error and Sample Size

- How does the variability of the sampling distribution change as sample size changes?

Standard Error and Sample Size

- How does the variability of the sampling distribution change as sample size changes?

Sampling Distribution, $n=10$

Sampling Distribution, $\mathrm{n}=100$

Sampling Distribution, $\mathrm{n}=1000$

Variability and Sample Size II

- The sampling distributions for $n=10,100,1000$ are all approximately Normal, and so 95% of sample means are within 2 standard error units of the sampling distribution mean.

Variability and Sample Size II

- The sampling distributions for $n=10,100,1000$ are all approximately Normal, and so 95% of sample means are within 2 standard error units of the sampling distribution mean.
- We can approximate the mean and standard error of each sampling distribution, and construct intervals which contain 95% of all sample means:

Variability and Sample Size II

- The sampling distributions for $n=10,100,1000$ are all approximately Normal, and so 95% of sample means are within 2 standard error units of the sampling distribution mean.
- We can approximate the mean and standard error of each sampling distribution, and construct intervals which contain 95% of all sample means:

n	mean	standard error	lower	upper
10	0.5	0.11	0.28	.72
100	0.5	0.035	0.43	0.57
1000	0.5	0.011	0.48	0.52

Variability and Sample Size III

- Highlighted in green are the intervals containing 95% of all sample means:

Sampling Distribution, $n=10$

Sampling Distribution, $\mathrm{n}=100$

The Shape of the Sampling Distribution

- How does the shape of the samplign distribution change as sample size increases?

The Shape of the Sampling Distribution

- How does the shape of the samplign distribution change as sample size increases?

Population Distribution

Sampling Distribution, $\mathrm{n}=10$

Sampling Distribution, $\mathrm{n}=4$

Sampling Distribution, $\mathrm{n}=100$

Polling Example

- A Oct 29 - Nov 12020 poll by Marist College surveyed 1020 registered voters in Pennsylvania by landline or mobile number, asking

If November's election were held today, whom would you support??
The options were: Joe Biden/Kamala Harris, Donald Trump/Mike Pence, Other, Undecided.

Polling Example

- A Oct 29 - Nov 12020 poll by Marist College surveyed 1020 registered voters in Pennsylvania by landline or mobile number, asking

If November's election were held today, whom would you support??
The options were: Joe Biden/Kamala Harris, Donald Trump/Mike Pence, Other, Undecided.

- 50% of respondents supported Biden/Harris, 46% supported Trump/Pence, 1% supported another candidate, and 3\% were undecided.

Polling Example

- A Oct 29 - Nov 12020 poll by Marist College surveyed 1020 registered voters in Pennsylvania by landline or mobile number, asking

If November's election were held today, whom would you support??
The options were: Joe Biden/Kamala Harris, Donald Trump/Mike Pence, Other, Undecided.

- 50\% of respondents supported Biden/Harris, 46\% supported Trump/Pence, 1\% supported another candidate, and 3% were undecided.
- The survey lists a margin of error of $\pm 3.8 \%$, with 95% confidence (we'll discuss this on Friday)

Polling Example

- A Oct 29 - Nov 12020 poll by Marist College surveyed 1020 registered voters in Pennsylvania by landline or mobile number, asking

If November's election were held today, whom would you support??
The options were: Joe Biden/Kamala Harris, Donald Trump/Mike Pence, Other, Undecided.

- 50\% of respondents supported Biden/Harris, 46\% supported Trump/Pence, 1\% supported another candidate, and 3\% were undecided.
- The survey lists a margin of error of $\pm 3.8 \%$, with 95% confidence (we'll discuss this on Friday)
- In the Nov. 32020 election, Biden/Harris had 50.01\% of the vote, while Trump/Pence had 48.84% of the vote.

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris
- Sampling Method: SRS(?) of size $n=1020$ obtained using phone-numbers

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris
- Sampling Method: SRS(?) of size $n=1020$ obtained using phone-numbers
- Point Estimate/Sample Statistic: The sample proportion \hat{p} of Americans who plan to vote for Biden/Harris. In this case, $\hat{p}=0.5$.

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris
- Sampling Method: SRS(?) of size $n=1020$ obtained using phone-numbers
- Point Estimate/Sample Statistic: The sample proportion \hat{p} of Americans who plan to vote for Biden/Harris. In this case, $\hat{p}=0.5$.
- Is the sampling procedure representative? Perhaps. Five-Thirty-Eight gives this pollster an A+ rating for its use of statistical weighting procedures to account for deviations in sample from known population characteristics.

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris
- Sampling Method: SRS(?) of size $n=1020$ obtained using phone-numbers
- Point Estimate/Sample Statistic: The sample proportion \hat{p} of Americans who plan to vote for Biden/Harris. In this case, $\hat{p}=0.5$.
- Is the sampling procedure representative? Perhaps. Five-Thirty-Eight gives this pollster an A+ rating for its use of statistical weighting procedures to account for deviations in sample from known population characteristics.
- Are the results generalizable? Yes, provided the sample was obtained randomly from the population.

Polling using Sampling Framework

- Population: All registered voters in Pennsylvania ($N \approx 9$ million)
- Population Parameter: The proportion p of registered voters who plan to vote for Biden/Harris
- Census Result: We could compute the exact value of p by meticulously asking every registered voter in the population whether they plan to vote for Biden/Harris
- Sampling Method: SRS(?) of size $n=1020$ obtained using phone-numbers
- Point Estimate/Sample Statistic: The sample proportion \hat{p} of Americans who plan to vote for Biden/Harris. In this case, $\hat{p}=0.5$.
- Is the sampling procedure representative? Perhaps. Five-Thirty-Eight gives this pollster an A+ rating for its use of statistical weighting procedures to account for deviations in sample from known population characteristics.
- Are the results generalizable? Yes, provided the sample was obtained randomly from the population.
- Is it biased? Yes. Although hopefully bias was reduced through use of survey weighting.

