Confidence Intervals II

Nate Wells

Math 141, 3/17/21

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Implement the infer package to calculate confidence intervals
- Interpret confidence intervals

Section 1

The infer package

The infer Package

• The infer package makes efficient use of the %>% operator perform statistical inference.

The infer Package

- The infer package makes efficient use of the %>% operator perform statistical inference.
- The infer package makes use of several verbs-like functions:
 - specify, generate, calculate, visualize, get_ci

The infer Package

- The infer package makes efficient use of the %>% operator perform statistical inference.
- The infer package makes use of several verbs-like functions:
 - specify, generate, calculate, visualize, get_ci

COVID Incubation Time

The Infectious Disease Dynamics Group at Johns Hopkins University collected data between Dec 2019 and Jan 2019 on exposure and symptom onset for COVID-19 in the Hubei province of China.

COVID Incubation Time

The Infectious Disease Dynamics Group at Johns Hopkins University collected data between Dec 2019 and Jan 2019 on exposure and symptom onset for COVID-19 in the Hubei province of China.

The distribution of Incubation times for 64 patients is shown below:

COVID Incubation Time

The Infectious Disease Dynamics Group at Johns Hopkins University collected data between Dec 2019 and Jan 2019 on exposure and symptom onset for COVID-19 in the Hubei province of China.

The distribution of Incubation times for 64 patients is shown below:

- What is the population of interest? What is the parameter?
- What is the sample? What is the statistic?

• Every statistical investigation begins with a sample data frame (i.e. covid)

- Every statistical investigation begins with a sample data frame (i.e. covid)
- The sample may contain many variables of interest

- Every statistical investigation begins with a sample data frame (i.e. covid)
- The sample may contain many variables of interest
- We must first specify which variable(s) will be the focus of our investigation by designating a response variable

- Every statistical investigation begins with a sample data frame (i.e. covid)
- The sample may contain many variables of interest
- We must first specify which variable(s) will be the focus of our investigation by designating a response variable
- To investigate the infection rate

```
covid %>%
   specify(response = Incubation)
```

• In order to create a bootstrap distribution, we need to resample many times from the OG sample

- In order to create a bootstrap distribution, we need to resample many times from the OG sample
- After selecting variables, pipe results into the generate function to create replicates

```
covid %>%
  specify(response = Incubation) %>%
  generate( reps = 2000, type = "bootstrap")
```

- In order to create a bootstrap distribution, we need to resample many times from the OG sample
- After selecting variables, pipe results into the generate function to create replicates

```
covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap")
```

• We need to indicate how many replicates we want, and what type of method we'll use to create them.

- In order to create a bootstrap distribution, we need to resample many times from the OG sample
- After selecting variables, pipe results into the generate function to create replicates

```
covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap")
```

- We need to indicate how many replicates we want, and what type of method we'll use to create them.
- For bootstrap confidence intervals, choose type = "bootstrap", and almost always use at least reps = 2000

- In order to create a bootstrap distribution, we need to resample many times from the OG sample
- After selecting variables, pipe results into the generate function to create replicates

```
covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap")
```

- We need to indicate how many replicates we want, and what type of method we'll use to create them.
- For bootstrap confidence intervals, choose type = "bootstrap", and almost always use at least reps = 2000
- The resulting data frame has a number of rows equal reps \times sample_size

• Once we have our bootstrap samples, we need to compute the corresponding statistics

- Once we have our bootstrap samples, we need to compute the corresponding statistics
- Use the calculate function, whose first argument is stat

- Once we have our bootstrap samples, we need to compute the corresponding statistics
- Use the calculate function, whose first argument is stat
- Many statistics are available: "mean", "sum", "sd", "median", "prop", "diff in mean, "correlation", "slope", and more!

- Once we have our bootstrap samples, we need to compute the corresponding statistics
- Use the calculate function, whose first argument is stat
- Many statistics are available: "mean", "sum", "sd", "median", "prop", "diff in mean, "correlation", "slope", and more!

```
covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")
```

- Once we have our bootstrap samples, we need to compute the corresponding statistics
- Use the calculate function, whose first argument is stat
- Many statistics are available: "mean", "sum", "sd", "median", "prop", "diff in mean, "correlation", "slope", and more!

```
covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")
```

• After applying calculate the resulting data frame consists of one bootstrap statistic for each replicate (saved to the variable stat)

Sample Statistic

• Suppose you want to just calculate summary statistics of the OG sample

Sample Statistic

- Suppose you want to just calculate summary statistics of the OG sample
- By using specify and calculate (and omitting generate) we can do just that, paralleling similar calculation for the bootstrap statistics

```
covid_stat<- covid %>%
   specify(response = Incubation) %>%
   calculate(stat = "mean")
covid_stat
```

Sample Statistic

- Suppose you want to just calculate summary statistics of the OG sample
- By using specify and calculate (and omitting generate) we can do just that, paralleling similar calculation for the bootstrap statistics

```
covid_stat<- covid %>%
   specify(response = Incubation) %>%
   calculate(stat = "mean")
covid_stat
```

• Note: we saved the value of this calculation as covid_stat so we could use it later

Save the bootstrap too

• Since we also will want to make frequent use of the bootstrap statistics, it's worth saving them as a variable too:

Save the bootstrap too

• Since we also will want to make frequent use of the bootstrap statistics, it's worth saving them as a variable too:

```
covid_boot<- covid %>%
  specify(response = Incubation) %>%
  generate( reps = 2000, type = "bootstrap") %>%
  calculate(stat = "mean")
head(covid_boot)
```

• In order to perform any statistical inference, we need to ensure appropriate shape conditions on bootstrap distribution are met

- In order to perform any statistical inference, we need to ensure appropriate shape conditions on bootstrap distribution are met
- Use the visaulize verb to quickly generate a reasonably nice-looking histogram of the bootstrap distribution.

- In order to perform any statistical inference, we need to ensure appropriate shape conditions on bootstrap distribution are met
- Use the visaulize verb to quickly generate a reasonably nice-looking histogram of the bootstrap distribution.

covid_boot %>% visualize()

- In order to perform any statistical inference, we need to ensure appropriate shape conditions on bootstrap distribution are met
- Use the visaulize verb to quickly generate a reasonably nice-looking histogram of the bootstrap distribution.

covid_boot %>% visualize()

get_confidence_interval to...Get Confidence Interval

• To compute a confidence interval, pipe the calculated data frame into get_confidence_interval (you can use get_ci for brevity)

get_confidence_interval to...Get Confidence Interval

- To compute a confidence interval, pipe the calculated data frame into get_confidence_interval (you can use get_ci for brevity)
- We need to specify the type of interval we want (either "percentile" or "se"), along with the confidence level

get_confidence_interval to...Get Confidence Interval

- To compute a confidence interval, pipe the calculated data frame into get_confidence_interval (you can use get_ci for brevity)
- We need to specify the type of interval we want (either "percentile" or "se"), along with the confidence level
- · It's useful to save the resulting data frame for later use
get_confidence_interval to...Get Confidence Interval

- To compute a confidence interval, pipe the calculated data frame into get_confidence_interval (you can use get_ci for brevity)
- We need to specify the type of interval we want (either "percentile" or "se"), along with the confidence level
- It's useful to save the resulting data frame for later use

```
percentile_ci<-covid_boot %>%
  get_ci(level = .95, type = "percentile")
percentile_ci
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63
```

get_confidence_interval to...Get Confidence Interval

- To compute a confidence interval, pipe the calculated data frame into get_confidence_interval (you can use get_ci for brevity)
- We need to specify the type of interval we want (either "percentile" or "se"), along with the confidence level
- It's useful to save the resulting data frame for later use

```
percentile_ci<-covid_boot %>%
  get_ci(level = .95, type = "percentile")
percentile_ci
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63
```

• When using the percentile type, the first value printed is the lower and the second is the upper bound.

13/29

Shade Confidence Intervals

• Once you've used get_ci to obtain endpoints of the confidence interval, you can shade the sampling distribution with the confidence interval region.

```
covid_boot %>% visualize()+shade_ci(endpoints = percentile_ci)
```


• The confidence interval using the standard error method will be of the form

 $\mathrm{statistic}\pm 2\cdot \textit{SE}$

• Here, *SE* is an approximation of the standard error based on the standard deviation of the bootstrap distribution

• The confidence interval using the standard error method will be of the form

 $\mathrm{statistic} \pm 2 \cdot \textit{SE}$

- Here, *SE* is an approximation of the standard error based on the standard deviation of the bootstrap distribution
 - It is possible to use the SE method with other confidence levels too. In this case, 2 is replaced with another appropriate value (discussed later this term)

• The confidence interval using the standard error method will be of the form

```
\mathrm{statistic} \pm 2 \cdot \textit{SE}
```

- Here, *SE* is an approximation of the standard error based on the standard deviation of the bootstrap distribution
 - It is possible to use the SE method with other confidence levels too. In this case, 2 is replaced with another appropriate value (discussed later this term)

```
se_ci<-covid_boot %>%
  get_ci(level = .95, type = "se", point_estimate = covid_stat)
se_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
```

1 2.46 3.60

• The confidence interval using the standard error method will be of the form

```
\mathrm{statistic} \pm 2 \cdot \textit{SE}
```

- Here, *SE* is an approximation of the standard error based on the standard deviation of the bootstrap distribution
 - It is possible to use the SE method with other confidence levels too. In this case, 2 is replaced with another appropriate value (discussed later this term)

```
se_ci<-covid_boot %>%
get_ci(level = .95, type = "se", point_estimate = covid_stat)
se_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60
```

• Note: for the se method, we also need to specify our point estimate (which is why we saved it as a variable before)

Compare the Methods

Each method produced a different confidence interval:

Compare the Methods

Each method produced a different confidence interval:

percentile_ci

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63
se_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60
```

Compare the Methods

Each method produced a different confidence interval:

percentile_ci

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63
se_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60
```

• Why?

covid_boot %>% visualize()


```
covid_boot %>% visualize() +
   shade_confidence_interval(endpoints = percentile_ci)+
   geom_vline(xintercept = 3.03, linetype = "dashed")
```



```
covid_boot %>% visualize() +
   shade_confidence_interval(endpoints = se_ci)+
   geom_vline(xintercept = 3.03, linetype = "dashed")
```


Percentile Method

Simulation-Based Bootstrap Distribution

SE Method

Simulation-Based Bootstrap Distribution

SE Method (with Percentile in blue)

Simulation-Based Bootstrap Distribution

Section 2

Interpreting Confidence Intervals

Confidence intervals consists of both an interval estimate and a confidence level.

Confidence intervals consists of both an interval estimate and a confidence level.

• Based on the Johns Hopkins data, we estimated the incubation time for COVID-19 was between 2.49 and 3.63, with 95% confidence.

Confidence intervals consists of both an interval estimate and a confidence level.

• Based on the Johns Hopkins data, we estimated the incubation time for COVID-19 was between 2.49 and 3.63, with 95% confidence.

What does confidence mean?

Confidence intervals consists of both an interval estimate and a confidence level.

• Based on the Johns Hopkins data, we estimated the incubation time for COVID-19 was between 2.49 and 3.63, with 95% confidence.

What does confidence mean?

• It gives the success rate for our method. For 95% of all possible samples, the interval we construct will actually contain the population parameter.

Confidence intervals consists of both an interval estimate and a confidence level.

• Based on the Johns Hopkins data, we estimated the incubation time for COVID-19 was between 2.49 and 3.63, with 95% confidence.

What does confidence mean?

- It gives the success rate for our method. For 95% of all possible samples, the interval we construct will actually contain the population parameter.
- The problem?
 - We only have 1 sample, and we don't know if it belongs to the 95% of "good" samples, or the 5% of "bad" ones

Confidence intervals consists of both an interval estimate and a confidence level.

• Based on the Johns Hopkins data, we estimated the incubation time for COVID-19 was between 2.49 and 3.63, with 95% confidence.

What does confidence mean?

- It gives the success rate for our method. For 95% of all possible samples, the interval we construct will actually contain the population parameter.
- The problem?
 - We only have 1 sample, and we don't know if it belongs to the 95% of "good" samples, or the 5% of "bad" ones
- The consolation?
 - If I go through my life constructing 95% confidence intervals, I will be telling the truth about 95% of the time (I'll take that rate!)

100 Confidence Intervals

Nate Wells

Suppose we wish to estimate the number of hours a Reed student sleeps on a typical night. We obtain the following 95% confidence interval:(7.86, 8.34)

Suppose we wish to estimate the number of hours a Reed student sleeps on a typical night. We obtain the following 95% confidence interval:(7.86, 8.34)

1 A 95% confidence interval **does not** contain 95% of observations in the population.

Suppose we wish to estimate the number of hours a Reed student sleeps on a typical night. We obtain the following 95% confidence interval:(7.86, 8.34)

• A 95% confidence interval **does not** contain 95% of observations in the population.

Suppose we wish to estimate the number of hours a Reed student sleeps on a typical night. We obtain the following 95% confidence interval:(7.86, 8.34)

() A 95% confidence interval **does not** contain 95% of observations in the population.

A 95% confidence interval does not mean that 95% of all sample means fall within the given range.

A 95% confidence interval does not mean that 95% of all sample means fall within the given range.

A 95% confidence interval does not mean that 95% of all sample means fall within the given range.

A 95% confidence interval does not mean that there is a 95% chance that the true
 parameter falls in the given range.

- Ø A 95% confidence interval does not mean that there is a 95% chance that the true parameter falls in the given range.
- Once a random sample has been observed and the confidence interval calculated, there is no more randomness in the process. We cannot make probabilistic statements about the outcome.

- Ø A 95% confidence interval does not mean that there is a 95% chance that the true parameter falls in the given range.
- Once a random sample has been observed and the confidence interval calculated, there is no more randomness in the process. We cannot make probabilistic statements about the outcome.
 - At this point, the interval either does or does not contain the fixed (but unknown) parameter

- A 95% confidence interval does not mean that there is a 95% chance that the true
 parameter falls in the given range.
- Once a random sample has been observed and the confidence interval calculated, there is no more randomness in the process. We cannot make probabilistic statements about the outcome.
 - At this point, the interval either does or does not contain the fixed (but unknown) parameter
 - One sample (of 10000) had a sample mean of 4.9 and produced a confidence interval of (4.6, 5.2).

- A 95% confidence interval does not mean that there is a 95% chance that the true
 parameter falls in the given range.
- Once a random sample has been observed and the confidence interval calculated, there is no more randomness in the process. We cannot make probabilistic statements about the outcome.
 - At this point, the interval either does or does not contain the fixed (but unknown) parameter
 - One sample (of 10000) had a sample mean of 4.9 and produced a confidence interval of (4.6, 5.2).
 - Based on what you know about sleep patterns, do you think there is a 95% chance this interval contains the true parameter?

Precision

How can we increase the precision of our confidence interval (i.e. decrease the margin of error)?
Precision

How can we increase the precision of our confidence interval (i.e. decrease the margin of error)?

- Increase sample size.
 - The standard deviation of the sampling distribution decreases as sample size increases. More sample means are closer to the true parameter

Precision

How can we increase the precision of our confidence interval (i.e. decrease the margin of error)?

- Increase sample size.
 - The standard deviation of the sampling distribution decreases as sample size increases. More sample means are closer to the true parameter
- Decrease confidence level.
 - The margin of error is determined by the percentiles. A 95% confidence interval is formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.
 - Decreasing confidence level brings the percentiles closer to the 50th percentile, decreasing the width of the interval.