Hypothesis Testing I

Nate Wells

Math 141, 3/22/21

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Review hypothesis testing activity from Friday
- Discuss hypothesis testing framework

Section 1

Hypothesis Testing Activity

• In an episode of the US show *Mythbusters*, the hosts conducted an experiment to determine whether yawning is contagious.

- In an episode of the US show *Mythbusters*, the hosts conducted an experiment to determine whether yawning is contagious.
- 50 participants were divided into two groups:
 - 34 participants in the seed group were exposed to a yawn. Of these, 10 later yawned.
 - 16 participants in the control group were not exposed to a yawn. Of these 4 later yawned.

- In an episode of the US show *Mythbusters*, the hosts conducted an experiment to determine whether yawning is contagious.
- 50 participants were divided into two groups:
 - 34 participants in the seed group were exposed to a yawn. Of these, 10 later yawned.
 - 16 participants in the control group were not exposed to a yawn. Of these 4 later yawned.

	yawned		
group	No	Yes	Total
Control	12	4	16
Seed	24	10	34
Total	36	14	50

- In an episode of the US show *Mythbusters*, the hosts conducted an experiment to determine whether yawning is contagious.
- 50 participants were divided into two groups:
 - 34 participants in the seed group were exposed to a yawn. Of these, 10 later yawned.
 - 16 participants in the control group were not exposed to a yawn. Of these 4 later yawned.

	yawned		
group	No	Yes	Total
Control	12	4	16
Seed	24	10	34
Total	36	14	50

The sample statistics were:

$$\hat{p}_s = 0.29$$
 $\hat{p}_c = 0.25$ $\hat{p} = 0.28$ $\hat{p}_s - \hat{p}_c = 0.04$

- In an episode of the US show *Mythbusters*, the hosts conducted an experiment to determine whether yawning is contagious.
- 50 participants were divided into two groups:
 - 34 participants in the seed group were exposed to a yawn. Of these, 10 later yawned.
 - 16 participants in the control group were not exposed to a yawn. Of these 4 later yawned.

	yawned		
group	No	Yes	Total
Control	12	4	16
Seed	24	10	34
Total	36	14	50

The sample statistics were:

$$\hat{p}_s = 0.29$$
 $\hat{p}_c = 0.25$ $\hat{p} = 0.28$ $\hat{p}_s - \hat{p}_c = 0.04$

• If yawning is not contagious, how likely is it such a difference in proportion would be observed just due to chance?

Sampling Variability

• We assume that exactly 14 / 50 participants would yawn, and randomly assigned them to groups of size 16 (control) and 34 (seed).

Sampling Variability

- We assume that exactly 14 / 50 participants would yawn, and randomly assigned them to groups of size 16 (control) and 34 (seed).
 - Compute proportion of yawns in each group and difference in proportion between groups.
 - Replicate this procedure many times:

Sampling Variability

- We assume that exactly 14 / 50 participants would yawn, and randomly assigned them to groups of size 16 (control) and 34 (seed).
 - Compute proportion of yawns in each group and difference in proportion between groups.
 - Replicate this procedure many times:

Distribution of Differences

Follow-up Questions:

1 How does our observed proportion compare? $\hat{p}_s - \hat{p}_c = 0.044$

Follow-up Questions:

• How does our observed proportion compare? $\hat{p}_s - \hat{p}_c = 0.044$

If there is truly no relationship between being exposed to a yawn and yawning, is it plausible to observe the difference in proportion we did?

Follow-up Questions:

• How does our observed proportion compare? $\hat{p}_s - \hat{p}_c = 0.044$

If there is truly no relationship between being exposed to a yawn and yawning, is it plausible to observe the difference in proportion we did?

Based on the data, do we have strong enough evidence to conclude yawning is contagious?

Section 2

Hypothesis Testing Framework

• A fair coin should land heads about 50% of the time

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 4 heads in a row is 6.25%, while 5 heads in a rows is 3.125%

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 4 heads in a row is 6.25%, while 5 heads in a rows is 3.125%

Let's do an experiment. I'll flip a coin several times and count how many heads I get in a row.

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 4 heads in a row is 6.25%, while 5 heads in a rows is 3.125%

Let's do an experiment. I'll flip a coin several times and count how many heads I get in a row.

 If you think the coin is unfair, choose the No button on the participants panel of Zoom.

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 4 heads in a row is 6.25%, while 5 heads in a rows is 3.125%

Let's do an experiment. I'll flip a coin several times and count how many heads I get in a row.

- If you think the coin is unfair, choose the No button on the participants panel of Zoom.
- If I repeat this experiment in 30 classes over the next several years, I expect to get 5 heads in a row about 1 one of them.

- A fair coin should land heads about 50% of the time
- But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 4 heads in a row is 6.25%, while 5 heads in a rows is 3.125%

Let's do an experiment. I'll flip a coin several times and count how many heads I get in a row.

- If you think the coin is unfair, choose the No button on the participants panel of Zoom.
- If I repeat this experiment in 30 classes over the next several years, I expect to get 5 heads in a row about 1 one of them.
- How willing are you to observe an improbable event and mistakenly conclude your original belief was incorrect?

Hypothesis Testing represents a type of scientific experiment, and so should follow the general scientific method.

1 Present research question

- Present research question
- Ø Identify hypotheses

- Present research question
- Ø Identify hypotheses
- **3** Obtain samples and generate bootstrap samples

- **1** Present research question
- Ø Identify hypotheses
- **3** Obtain samples and generate bootstrap samples
- O Calculate sample statistics

- Present research question
- Ø Identify hypotheses
- **8** Obtain samples and generate bootstrap samples
- Ø Calculate sample statistics
- 6 Compute liklihood of observing statistic under original hypothesis

- Present research question
- Ø Identify hypotheses
- **3** Obtain samples and generate bootstrap samples
- Ø Calculate sample statistics
- 6 Compute liklihood of observing statistic under original hypothesis
- 6 Determine statistical significance and make conclusion on research question

• The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The **null value** is the value of the population parameter under the Null Hypothesis.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The **null value** is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H*_a are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The **null value** is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H*_a are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.
 - Incorrect H_0 : The proportion of heads in 5 flips of the coin is $\hat{p} = 0.5$.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical prespective or that there is no relationship among several variables.
 - H_0 : This is a fair coin. The probability it lands heads is p = 0.5.
- The alternative hypothesis *H_a* is the negation of the null hypothesis. It is often the theory we would like to prove.
 - H_a : This coin is biased to produce heads more often than tail. The probability it lands heads is p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The **null value** is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H*_a are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.
 - Incorrect H_0 : The proportion of heads in 5 flips of the coin is $\hat{p} = 0.5$.
 - Incorrect H_a : The proportion of heads in 5 flips of the coin was $\hat{p} = 1 > 0.5$.

• While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.

- While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.

- While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include:

1 $H_a: p > 0.5;$ 2 $H_a: p < 0.5$

- While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include: *H_a*: p > 0.5; *H_a*: p < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value.

- While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include:
 H_a : *p* > 0.5;
 H_a : *p* < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value.
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value.

- While there is only one logical negation of the Null Hypothesis, there are several statements contrary to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include:
 H_a : *p* > 0.5;
 H_a : *p* < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value.
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value.
- Default to using two-sided hypothesis tests. Only use one-sided tests when you are truly interested in only a single direction of effect.

• In order to compare the Null and Alternate Hypotheses, we need to quantify how likely it was to observe a particular sample statistic.

- In order to compare the Null and Alternate Hypotheses, we need to quantify how likely it was to observe a particular sample statistic.
- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.

- In order to compare the Null and Alternate Hypotheses, we need to quantify how likely it was to observe a particular sample statistic.
- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distingish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**

- In order to compare the Null and Alternate Hypotheses, we need to quantify how likely it was to observe a particular sample statistic.
- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distingish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 5 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.

- In order to compare the Null and Alternate Hypotheses, we need to quantify how likely it was to observe a particular sample statistic.
- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distingish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 5 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 5 heads in 5 flips) = $0.5^5 = 0.03125$

• The P-Value quantifies the strength of evidence against the Null Hypothesis. Smaller P-values represent stronger evidence to reject H_0 .

• How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.
- If the P-Value is less than the prescribed significance level of the test, we say the data is statistically significant and provides good evidence to reject H₀ in favor of H_a.

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.
- If the P-Value is less than the prescribed significance level of the test, we say the data is statistically significant and provides good evidence to reject H₀ in favor of H_a.
 - In the coin flip experiment, $\text{P-value} < \alpha$ since 0.03125 < 0.05

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.
- If the P-Value is less than the prescribed significance level of the test, we say the data is statistically significant and provides good evidence to reject H₀ in favor of H_a.
 - In the coin flip experiment, P-value $< \alpha$ since 0.03125 < 0.05
 - Our test was statistically significant and we reject the hypothesis that the coin is fair in favor of the hypothesis that the coin is more likely to flip heads.

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.
- If the P-Value is less than the prescribed significance level of the test, we say the data is **statistically significant** and provides good evidence to reject H_0 in favor of H_a .
 - In the coin flip experiment, P-value $< \alpha$ since 0.03125 < 0.05
 - Our test was statistically significant and we reject the hypothesis that the coin is fair in favor of the hypothesis that the coin is more likely to flip heads.
- We should always choose the value of α prior to conducting an experiment and observing data. Usually the choice is made for us depending on conventions in our field of study.

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
- The threshold for an experiment is called the **significance level** (usually denote with α).
 - In many fields, the standard significance level is $\alpha = 0.05$. But this may vary widely depending on application.
- If the P-Value is less than the prescribed significance level of the test, we say the data is **statistically significant** and provides good evidence to reject H₀ in favor of H_a.
 - In the coin flip experiment, P-value $< \alpha$ since 0.03125 < 0.05
 - Our test was statistically significant and we reject the hypothesis that the coin is fair in favor of the hypothesis that the coin is more likely to flip heads.
- We should always choose the value of α prior to conducting an experiment and observing data. Usually the choice is made for us depending on conventions in our field of study.
- Choosing a significance level of $\alpha = 0.05$ means that we treat any result that would have occurred by chance alone less than 5% of the time as good evidence that the null hypothesis is false.

Nate Wells

• Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - ٠ Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		lest conclusion	
		do not reject H ₀	reject H_0 in favor of H_A
Truth	H_0 true	Correct Decision	Type 1 Error
	H_A true	Type 2 Error	Correct Decision

.

 Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.

- Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

	lest conclusion	
	do not reject H_0	reject H_0 in favor of H_A
H_0 true	Correct Decision	Type 1 Error
H_A true	Type 2 Error	Correct Decision
	H_0 true H_A true	$H_{A} \text{ true} \qquad Type 2 \text{ Error}$

• A **Type 1 Error** occurs when we reject H_0 when it is actually true.

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - ٠ Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion	
		do not reject H ₀	reject H_0 in favor of H_A
T	H_0 true	Correct Decision	Type 1 Error
Iruth	H_A true	Type 2 Error	Correct Decision

Test conclusion

- A **Type 1 Error** occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		do not reject H ₀	reject H_0 in favor of H_A
-	H_0 true	Correct Decision	Type 1 Error
Iruth	H_A true	Type 2 Error	Correct Decision

Test conclusion

- A **Type 1 Error** occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.
- A Type 2 Error occurs when we fail to reject H_0 when it is in fact false.

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		do not reject H ₀	reject H_0 in favor of H_A
-	H_0 true	Correct Decision	Type 1 Error
Iruth	H_A true	Type 2 Error	Correct Decision

Test conclusion

- A **Type 1 Error** occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.
- A Type 2 Error occurs when we fail to reject H_0 when it is in fact false.
 - The coin was indeed biased. But we withheld judgment since unlikely events do happen from time to time.

• The significance level of a hypothesis test corresponds to our willingness to make Type I errors.

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject H₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error
Significance Level and Power

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

Significance Level and Power

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

With great power comes...

Significance Level and Power

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

With great power comes...greater chance of Type I error.