Probability

Nate Wells

Math 141, 3/26/21

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Introduce key definitions for probability theory
- Discuss conditional probability

Section 1

Probability Theory

Probability Theory is the study and quantification of uncertainty and randomness in outcomes of repeated experiments.

• A random process is one which we know what outcomes *could* happen, but don't know which particular outcome *will* happen.

- A random process is one which we know what outcomes *could* happen, but don't know which particular outcome *will* happen.
 - It can also be used to model processes that are complicated, but not truly random, to figure out how they work

- A random process is one which we know what outcomes *could* happen, but don't know which particular outcome *will* happen.
 - It can also be used to model processes that are complicated, but not truly random, to figure out how they work
- Probability has diverse applications:

- A random process is one which we know what outcomes *could* happen, but don't know which particular outcome *will* happen.
 - It can also be used to model processes that are complicated, but not truly random, to figure out how they work
- Probability has diverse applications:
 - Statistics: Quantifies uncertainty for random sampling
 - Physics: Explains the universe on its smallest scale via quantum mechanics
 - Biology: Predicts results of population dynamics and ecosystems
 - Computer Science: Implements random algorithms in machine learning for problem solving
 - Economics: Models volatile market trends and interactions of financial systems
 - *Philosophy*: Provides framework for understanding knowledge and certainty in epistemology

The **probability** of a particular outcome in a random experiment is the proportion of times that outcome would occur if we observed the experiment an *arbitrarily* large number of times.

• We say a coin has 50% probability of landing heads because in a large number of flips, we expect about half to be heads.

- We say a coin has 50% probability of landing heads because in a large number of flips, we expect about half to be heads.
- We often use capital letters to denote particular outcomes and the letter *P* to abbreviate "probability"
 - If *H* corresponds to flipping a coin and getting heads, the expression P(H) = 0.5 means "the probability of flipping a heads is 50%"

- We say a coin has 50% probability of landing heads because in a large number of flips, we expect about half to be heads.
- We often use capital letters to denote particular outcomes and the letter *P* to abbreviate "probability"
 - If *H* corresponds to flipping a coin and getting heads, the expression P(H) = 0.5 means "the probability of flipping a heads is 50%"
- Statisticians sometimes distinguish between particular *outcomes* of an experiment (a single observable result) and *events* (collections of 1 or more outcomes). But we're going to treat these as synonymous:

- We say a coin has 50% probability of landing heads because in a large number of flips, we expect about half to be heads.
- We often use capital letters to denote particular outcomes and the letter *P* to abbreviate "probability"
 - If *H* corresponds to flipping a coin and getting heads, the expression P(H) = 0.5 means "the probability of flipping a heads is 50%"
- Statisticians sometimes distinguish between particular *outcomes* of an experiment (a single observable result) and *events* (collections of 1 or more outcomes). But we're going to treat these as synonymous:
 - An outcome or event is something you could observe as the result of a random experiment.
 - Suppose a 6-sided die is rolled. Both "the die rolled a 1" and "the die rolled a 1 or a 2" are events.

The Law of Large Numbers

Theorem (The Law of Large Numbers)

Suppose a particular experiment is repeated n times and let \hat{p}_n denote the proportion of times a particular outcome occurs. As n gets larger, the proportion \hat{p}_n approaches the true probability p of that outcome.

The Law of Large Numbers

Theorem (The Law of Large Numbers)

Suppose a particular experiment is repeated n times and let \hat{p}_n denote the proportion of times a particular outcome occurs. As n gets larger, the proportion \hat{p}_n approaches the true probability p of that outcome.

- A perfectly balanced coin should land on heads and tails in equal proportion in a large number of flips.
 - But in any finite number of flips, the number of heads and tails may not be equal.

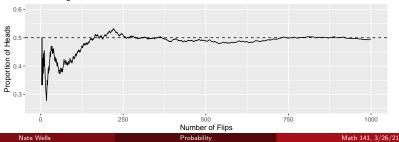
6/17

The Law of Large Numbers

Theorem (The Law of Large Numbers)

Suppose a particular experiment is repeated n times and let \hat{p}_n denote the proportion of times a particular outcome occurs. As n gets larger, the proportion \hat{p}_n approaches the true probability p of that outcome.

- A perfectly balanced coin should land on heads and tails in equal proportion in a large number of flips.
 - But in any finite number of flips, the number of heads and tails may not be equal.



Law of Large Numbers

• Two events A and B are said to be disjoint (mutually exclusive) if it is not possible for both to occur at the same time.

- Two events A and B are said to be disjoint (mutually exclusive) if it is not possible for both to occur at the same time.
 - Let A denote the event "a 1 is rolled on 6-sided die" and B denote the event "a 2 is rolled on 6-sided die". Then A and B are disjoint events describing a single die roll.

- Two events A and B are said to be disjoint (mutually exclusive) if it is not possible for both to occur at the same time.
 - Let A denote the event "a 1 is rolled on 6-sided die" and B denote the event "a 2 is rolled on 6-sided die". Then A and B are disjoint events describing a single die roll.

Theorem (Addition Rule)

The probability that at least one event occurs in a pair of disjoint events is the sum of their individual probabilities:

$$P(A \text{ or } B) = P(A) + P(B)$$

- Two events A and B are said to be disjoint (mutually exclusive) if it is not possible for both to occur at the same time.
 - Let A denote the event "a 1 is rolled on 6-sided die" and B denote the event "a 2 is rolled on 6-sided die". Then A and B are disjoint events describing a single die roll.

Theorem (Addition Rule)

The probability that at least one event occurs in a pair of disjoint events is the sum of their individual probabilities:

$$P(A \text{ or } B) = P(A) + P(B)$$

• When a fair 6-sided die is rolled, each number 1 - 6 has equal chance of appearing. What is the probability that a number whose name starts with f is rolled?

- Two events A and B are said to be disjoint (mutually exclusive) if it is not possible for both to occur at the same time.
 - Let A denote the event "a 1 is rolled on 6-sided die" and B denote the event "a 2 is rolled on 6-sided die". Then A and B are disjoint events describing a single die roll.

Theorem (Addition Rule)

The probability that at least one event occurs in a pair of disjoint events is the sum of their individual probabilities:

$$P(A \text{ or } B) = P(A) + P(B)$$

• When a fair 6-sided die is rolled, each number 1 - 6 has equal chance of appearing. What is the probability that a number whose name starts with f is rolled?

P(starts with f) = P(roll a 4 or roll a 5) = P(roll a 4) + P(roll a 5 $) = \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$

• A certain outcome is one that has probability 1 of occurring. A negligible outcome is one that has probability 0 of occurring.

- A **certain** outcome is one that has probability 1 of occurring. A **negligible** outcome is one that has probability 0 of occurring.
 - It is possible to observe negligible outcomes, and to fail to observe certain ones

- A certain outcome is one that has probability 1 of occurring. A negligible outcome is one that has probability 0 of occurring.
 - It is possible to observe negligible outcomes, and to fail to observe certain ones
 - The probability of an outcome is the proportion of occurrences if trials were repeated indefinitely.

- A certain outcome is one that has probability 1 of occurring. A negligible outcome is one that has probability 0 of occurring.
 - It is possible to observe negligible outcomes, and to fail to observe certain ones
 - The probability of an outcome is the proportion of occurrences if trials were repeated indefinitely.
- Suppose I have two coins on a table. I drop both down and measure the *exact* distance between their centers, and find it to be $\sqrt{2} = 1.41...$

- A certain outcome is one that has probability 1 of occurring. A negligible outcome is one that has probability 0 of occurring.
 - It is possible to observe negligible outcomes, and to fail to observe certain ones
 - The probability of an outcome is the proportion of occurrences if trials were repeated indefinitely.
- Suppose I have two coins on a table. I drop both down and measure the *exact* distance between their centers, and find it to be $\sqrt{2} = 1.41...$
 - What is the probability that the distance between the centers on my next attempt will also be $\sqrt{2}$?

- A certain outcome is one that has probability 1 of occurring. A negligible outcome is one that has probability 0 of occurring.
 - It is possible to observe negligible outcomes, and to fail to observe certain ones
 - The probability of an outcome is the proportion of occurrences if trials were repeated indefinitely.
- Suppose I have two coins on a table. I drop both down and measure the *exact* distance between their centers, and find it to be $\sqrt{2} = 1.41...$
 - What is the probability that the distance between the centers on my next attempt will also be $\sqrt{2}$?
 - What is a certain outcome for this experiment?

• The complement to an outcome A (denoted A^c) is the outcome that occurs exactly when the original does not.

- The complement to an outcome A (denoted A^c) is the outcome that occurs exactly when the original does not.
 - If A is the event that a 1 is rolled on a 6-sided die, then A^c is the event that a 2,3,4,5, or 6 is rolled.

- The complement to an outcome A (denoted A^c) is the outcome that occurs exactly when the original does not.
 - If A is the event that a 1 is rolled on a 6-sided die, then A^c is the event that a 2,3,4,5, or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an outcome occurs is 1 minus the probability of the outcome:

 $P(A^c) = 1 - P(A)$

- The complement to an outcome A (denoted A^c) is the outcome that occurs exactly when the original does not.
 - If A is the event that a 1 is rolled on a 6-sided die, then A^c is the event that a 2,3,4,5, or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an outcome occurs is 1 minus the probability of the outcome:

 $P(A^c) = 1 - P(A)$

• What is the probability that any number other than a 1 is rolled on a fair 6-sided die?

- The complement to an outcome A (denoted A^c) is the outcome that occurs exactly when the original does not.
 - If A is the event that a 1 is rolled on a 6-sided die, then A^c is the event that a 2,3,4,5, or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an outcome occurs is 1 minus the probability of the outcome:

$$P(A^c) = 1 - P(A)$$

• What is the probability that any number other than a 1 is rolled on a fair 6-sided die?

$$P($$
 roll something other than a 1 $) = 1 - P($ roll a 1 $) = 1 - \frac{1}{6} = \frac{5}{6}$

Independent Events

• Two events A and B are **independent** if knowing whether A occurred does not change the likelihood that B occurred (and vice versa)

Independent Events

- Two events A and B are **independent** if knowing whether A occurred does not change the likelihood that B occurred (and vice versa)
 - Suppose we flip a coin and roll a 6-sided die at the same time. Let A be the event that the coin flips heads and B be the event that the die rolls a 1.
 - Since the coin presumably gives us no information about the die, we say A and B are independent.

Independent Events

- Two events A and B are **independent** if knowing whether A occurred does not change the likelihood that B occurred (and vice versa)
 - Suppose we flip a coin and roll a 6-sided die at the same time. Let A be the event that the coin flips heads and B be the event that the die rolls a 1.
 - Since the coin presumably gives us no information about the die, we say A and B are independent.

Theorem (Multiplication Rule)

If A and B are independent events, then the probability that both occur is the product of their individual probabilities:

$$P(A \text{ and } B) = P(A)P(B)$$

• Suppose I want to choose a sample of people in our 141 classes. Assume that I do so 1 at a time, with replacement. What is the probability that when I choose 3 times, nobody in the sample is from the 10am section? (30 / 56 students are in the 10am section)

Section 2

Conditional Probability

	Coffee Tea		total
First-year	7	10	17
Sophomore	25	20	45
Junior	13	12	25
Senior	8	5	13
total	53	47	100

A survey was given to 100 Math 141 students in 2017. Some results are summarized below:

• What is the probability that a random student prefers coffee?

	Coffee Tea		total
First-year	7	10	17
Sophomore	25	20	45
Junior	13	12	25
Senior	8	5	13
total	53	47	100

A survey was given to 100 Math 141 students in 2017. Some results are summarized below:

• What is the probability that a random student prefers coffee?

What is the probability that a random student was a sophomore?

Coffee Tea		total
7	10	17
25	20	45
13	12	25
8	5	13
53	47	100
	7 25 13 8	7 10 25 20 13 12 8 5

	Coffee Tea		total
First-year	7	10	17
Sophomore	25	20	45
Junior	13	12	25
Senior	8	5	13
total	53	47	100

- What is the probability that a random student prefers coffee?
- What is the probability that a random student was a sophomore?
- What is the probability that a random student was a sophomore who preferred coffee?

	Coffee Tea		total
First-year	7	10	17
Sophomore	25	20	45
Junior	13	12	25
Senior	8	5	13
total	53	47	100

- What is the probability that a random student prefers coffee?
- What is the probability that a random student was a sophomore?
- What is the probability that a random student was a sophomore who preferred coffee?
- What is the probability that a random sophomore preferred coffee?

• The conditional probability of an event A given another event B is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)}$$

• The conditional probability of an event A given another event B is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)}$$

• In the previous example, what is the conditional probability that a student prefers coffee, given that the student is a sophomore?

• The conditional probability of an event A given another event B is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)}$$

- In the previous example, what is the conditional probability that a student prefers coffee, given that the student is a sophomore?
- How can we use conditional probability to find the probability that two events both occur?

Theorem (General Multiplication Rule)

For any events A and B,

$$P(A \text{ and } B) = P(A|B)P(B) \quad \left(= P(B|A)P(A) \right)$$

• The conditional probability of an event A given another event B is

$$P(A|B) = rac{P(A ext{ and } B)}{P(B)}$$

- In the previous example, what is the conditional probability that a student prefers coffee, given that the student is a sophomore?
- How can we use conditional probability to find the probability that two events both occur?

Theorem (General Multiplication Rule)

For any events A and B,

$$P(A \text{ and } B) = P(A|B)P(B) \quad \left(= P(B|A)P(A) \right)$$

• Find the probability that a student is a sophomore who likes coffee.

Conditioning and Independence

Previously, we said two events are independent if knowing one occurs doesn't change the likelihood that the other occurred.

Conditioning and Independence

Previously, we said two events are independent if knowing one occurs doesn't change the likelihood that the other occurred.

Theorem (Criteria for Independence)				
Two events A and B are independent exactly when				
P(A B) = P(A) and	P(B A) = P(B)			

Conditioning and Independence

Previously, we said two events are independent if knowing one occurs doesn't change the likelihood that the other occurred.

Theorem (Criteria for Independence)				
Two events A and B are independent exactly when				
P(A B) = P(A) and $P(B A) = P(B)$				

• In the previous example, are the events that "a student is a sophomore" and "a student prefers coffee" independent?

The Law of Total Probability

One useful trick for computing probabilities is the following:

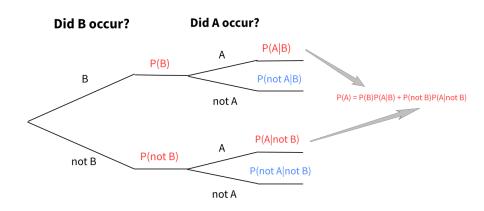
Theorem (The Law of Total Probability)

Let A and B be events. Then

$$P(A) = P(A|B)P(B) + P(A|B^{c})P(B^{c})$$

• We can often represent the Law of Total Probability using a Tree Diagram:

Tree Diagrams



Lost Marbles

Two boxes contain a different number of red and blue marbles. The first box contains 20% red marbles while the second contains 80% red marbles. Suppose we select a marble from box 1 25% of the time and a marble from box 2 75% of the time. What is the probability that a red marble is selected?