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In this lecture, we will. . .

• Discuss the Law of Total Probability and Bayes’ Rule
• Define and investigate Random Variables
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Conditional Probability Random Variables

Section 1

Conditional Probability
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Conditional Probability Random Variables

The Law of Total Probability

Recall the conditional probability of an event A given another event B is

P(A|B) = P(A and B)
P(B)

One useful trick for computing probabilities is the following:

Theorem (The Law of Total Probability)
Let A and B be events.Then

P(A) = P(A|B)P(B) + P(A|Bc )P(Bc )

• We can often represent the Law of Total Probability using a Tree Diagram:
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Conditional Probability Random Variables

Tree Diagrams
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Conditional Probability Random Variables

Lost Marbles

Two boxes contain a different number of red and blue marbles. The first box contains 20%
red marbles while the second contains 80% red marbles. Suppose we select a marble from
box 1 25% of the time and a marble from box 2 75% of the time. What is the
probability that a red marble is selected?
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Conditional Probability Random Variables

Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

• Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.
• The event B occurs if we get one of HH, HT , TH. So P(B) = 3

4

• The event A occurs if we get one of HT or HH, so P(A) = 1
2 .

• The events A and B both occur if we get one of HT or HH, so P(A and B) = 1
2 .

• Then

P(A|B) = P(A and B)
P(B) =

1
2
1
2

= 1

P(B|A) = P(A and B)
P(A) =

1
2
3
4

= 2
3
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Conditional Probability Random Variables

Bayes’ Rule

To relate P(A|B) and P(B|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events.Then

P(A|B) = P(B|A) P(A)
P(B)

• Why is this rule true?
• Under what circumstances will P(A|B) = P(B|A)?
• Under what circumstances will P(A|B) be much larger than P(B|A)? Much smaller?
• Suppose P(B|A) = 1.

• What does this suggest about A and B?
• What is P(A|B) in this case?
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Conditional Probability Random Variables

Bayes’ Rule and Hypothesis Testing

Consider a hypothesis test for a population mean with

H0 : µ = 0 and Ha : µ 6= 0
Suppose we obtain a sample with mean x̄ = 2.

• Let A be the event “The null hypothesis is true” and let B be the event "A random
sample has mean larger than x̄ = 2.
• Express the p-value for the sample mean x̄ = 2 in terms of conditional probabilities.
• In a typical research setting, we are usually interested in questions of the type:

• What is the probability that the null hypothesis is true?
• What is the probability that the null hypothesis is true, given that I observed a particular

sample?

• Express each of these in terms of the p-value and conditional probabilities.
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Conditional Probability Random Variables

Here there be monsters

Let H denote a hypothesis and O denote some observation.

• Suppose my son Oliver hears a noise coming from his closet (O). He considers the
hypothesis that there are monsters throwing a party (H).
• The probability P(O|H) for his observation is actually very high.

• If there were monsters partying in the closet, they would certainly be very noisy!

• But the fact that a noise was heard doesn’t make it very probable that there are party
monsters in the closet.
• I try to reassure him that even though he heard noises, P(H|O) is still low.

• In this case, P(O|H) is high and P(H|O) is low. Why?
• P(H) is very, very low compared to P(O).

• By the principle of hypothesis testing, we might see that P(O|H) is high and favor
the monster hypothesis H.
• Hypothesis testing just tells us about consistency of data with the null hypothesis. It
doesn’t give us the probability that the null is true.
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Conditional Probability Random Variables

Section 2

Random Variables
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Conditional Probability Random Variables

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a
random process.

• We use capital letters at the end of the alphabet (W ,X ,Y ,Z) to denote random
variables.
• We use lowercase letters (w , x , y , z) to denote the particular values of a random variable

• We use equation to express events associated to random variables.
• Let X = 5 denotes the event “The random variable X takes the value 5”.

• Events associated to variables have probabilities of occurring.
• P(X = 5) = .5 means X has 50% probability of taking the value 5.

Nate Wells Probability Math 141, 3/26/21 12 / 21
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Conditional Probability Random Variables

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.

• Examples of discrete variables:
• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.

Nate Wells Probability Math 141, 3/26/21 13 / 21



Conditional Probability Random Variables

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.
• Examples of discrete variables:

• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.

Nate Wells Probability Math 141, 3/26/21 13 / 21



Conditional Probability Random Variables

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.
• Examples of discrete variables:

• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.

Nate Wells Probability Math 141, 3/26/21 13 / 21



Conditional Probability Random Variables

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.
• Examples of discrete variables:

• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.
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Conditional Probability Random Variables

The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

• Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:
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Distribution for number of 1's in 6 rolls

• We can use the plot to find probabilities of outcomes associated to the variable.
• Calculate P(X ≤ 1). Then find x so that P(X ≤ x) ≥ .75.
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Conditional Probability Random Variables

The Distribution of a Continuous Variable

• We use density plots to visualize the distribution of a continuous variable. Areas
under the plot correspond to probabilities.

• The distribution for the amount of time T until a radioactive particle decays is given
below:
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Distribution for time until particle decays

• The probability that it takes between 0.5 and 1.5 units of time to decay is the area
under the curve between 0.5 and 1.5. P(0.5 < T < 1.5) =
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Conditional Probability Random Variables

The Distribution of a Continuous Variable

• We use density plots to visualize the distribution of a continuous variable. Areas
under the plot correspond to probabilities.
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• The probability that it takes between 0.5 and 1.5 units of time to decay is the area
under the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = 0.34
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Conditional Probability Random Variables

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

• Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:
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Conditional Probability Random Variables

Expected Value

The expected value (or mean) of a discrete random variable X is

E [X ] = x1P(X = x1) + x2P(X = x2) + . . . xnP(X = xn) =
n∑

i=1

xi P(X = xi )

• The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.
• Suppose we have a data set consisting of values {1, 1, 2, 2, 2, 2, 3, 4, 5, 5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?

E [X ] =1P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5)

=1
2
10

+ 2
4
10

+ 3
1
10

+ 4
1
10

+ 5
2
10

=
27
10

= 2.7

• But also notice that

E [X ] =
1
10

(1 · 2 + 2 · 4 + 3 · 1 + 4 · 1 + 5 · 2)

=
1
10

(1 + 1 + 2 + 2 + 2 + 2 + 3 + 4 + 5 + 5)
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Conditional Probability Random Variables

The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)
Let X be a random variable whose value depends on a random experiment. Suppose the
experiment is repeated n times and let x̄n denote the arithmetic mean of the values of X in
each trial. As n gets larger, the arithmetic mean x̄n approaches the expected value E [X ] of
that variable.
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Conditional Probability Random Variables

Gambler’s Ruin

A roulette wheel consists of 37 wedge (18 black, 18 red, 1 green). A player may bet $10
that a spun ball will land on a black wedge. If the ball lands on black, the player wins $10.
Otherwise, the player loses $10.

• Assuming each wedge has equal probability, what is the expected value of the bet?

• Suppose a gambler begins with $10,000. What will the gambler’s fortune look like
after 1000 plays?
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