Random Variables and the Normal Distribution

Nate Wells

Math 141, 3/31/21

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Define and explore Random Variables
- Investigate properties of the Normal Distribution
- Discuss the Central Limit Theorem and its role in statistics

Section 1

Random Variables

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a random process.

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a random process.

- We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random variables.
- We use lowercase letters (w, x, y, z) to denote the particular values of a random variable

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a random process.

- We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random variables.
- We use lowercase letters (w, x, y, z) to denote the particular values of a random variable
- We use equation to express events associated to random variables.
- Let $X=5$ denotes the event "The random variable X takes the value 5 ".

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a random process.

- We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random variables.
- We use lowercase letters (w, x, y, z) to denote the particular values of a random variable
- We use equation to express events associated to random variables.
- Let $X=5$ denotes the event "The random variable X takes the value 5 ".
- Events associated to variables have probabilities of occurring.
- $P(X=5)=.5$ means X has 50% probability of taking the value 5 .

Types of Random Variables

There are two main types of random variables:
(1) Discrete variables can take only finitely many different values.
(2) Continuous variables can take values equal to any real number in an interval.

Types of Random Variables

There are two main types of random variables:
(1) Discrete variables can take only finitely many different values.
(2) Continuous variables can take values equal to any real number in an interval.

- Examples of discrete variables:
- The number of credits a randomly chosen Reed student is taking.
- The number of vegetarians in a random sample of 10 people.
- The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

Types of Random Variables

There are two main types of random variables:
(1) Discrete variables can take only finitely many different values.
(2) Continuous variables can take values equal to any real number in an interval.

- Examples of discrete variables:
- The number of credits a randomly chosen Reed student is taking.
- The number of vegetarians in a random sample of 10 people.
- The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.
- Examples of continuous variables:
- The temperature of my office at a particular time of the day.
- The amount of time it takes a radioactive particle to decay.

Types of Random Variables

There are two main types of random variables:
(1) Discrete variables can take only finitely many different values.
(2) Continuous variables can take values equal to any real number in an interval.

- Examples of discrete variables:
- The number of credits a randomly chosen Reed student is taking.
- The number of vegetarians in a random sample of 10 people.
- The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.
- Examples of continuous variables:
- The temperature of my office at a particular time of the day.
- The amount of time it takes a radioactive particle to decay.
- Some discrete variables can be well-described by continuous variables:
- The height of a random person selected from a large population.
- The proportion of heads in a long sequence of coin flips.

The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

- Suppose a fair 6 -sided die is rolled 6 times. Let X be the number of 1 s rolled. The distribution of X is given by:

Distribution for number of 1 's in 6 rolls

The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

- Suppose a fair 6 -sided die is rolled 6 times. Let X be the number of 1 s rolled. The distribution of X is given by:

Distribution for number of 1 's in 6 rolls

- We can use the plot to find probabilities of outcomes associated to the variable.

The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

- Suppose a fair 6 -sided die is rolled 6 times. Let X be the number of 1 s rolled. The distribution of X is given by:

Distribution for number of 1 's in 6 rolls

- We can use the plot to find probabilities of outcomes associated to the variable.
- Calculate $P(X \leq 1)$. Then find x so that $P(X \leq x) \geq .75$.

The Distribution of a Continuous Variable

- We use density plots to visualize the distribution of a continuous variable. Areas under the plot correspond to probabilities.

The Distribution of a Continuous Variable

- We use density plots to visualize the distribution of a continuous variable. Areas under the plot correspond to probabilities.
- The distribution for the amount of time T until a radioactive particle decays is given below:

Distribution for time until particle decays

The Distribution of a Continuous Variable

- We use density plots to visualize the distribution of a continuous variable. Areas under the plot correspond to probabilities.
- The distribution for the amount of time T until a radioactive particle decays is given below:

Distribution for time until particle decays

- The probability that it takes between 0.5 and 1.5 units of time to decay is the area under the curve between 0.5 and 1.5. $P(0.5<T<1.5)=$

The Distribution of a Continuous Variable

- We use density plots to visualize the distribution of a continuous variable. Areas under the plot correspond to probabilities.
- The distribution for the amount of time T until a radioactive particle decays is given below:

Distribution for time until particle decays

- The probability that it takes between 0.5 and 1.5 units of time to decay is the area under the curve between 0.5 and 1.5. $P(0.5<T<1.5)=0.34$

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often approximate it using a continuous variable.

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often approximate it using a continuous variable.

- Suppose 500 students take a standardized exam, with mean 75 points. The distribution for the score S of a randomly chosen student is:

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often approximate it using a continuous variable.

- Suppose 500 students take a standardized exam, with mean 75 points. The distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often approximate it using a continuous variable.

- Suppose 500 students take a standardized exam, with mean 75 points. The distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam

Expected Value

The expected value (or mean) of a discrete random variable X is

$$
E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots x_{n} P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

Expected Value

The expected value (or mean) of a discrete random variable X is

$$
E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots x_{n} P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

- The expected value of X is the sum of the value X can take, weighted by the probability it takes those values.

Expected Value

The expected value (or mean) of a discrete random variable X is

$$
E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots x_{n} P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

- The expected value of X is the sum of the value X can take, weighted by the probability it takes those values.
- Suppose we have a data set consisting of values $\{1,1,2,2,2,2,3,4,5,5\}$. Let X be a value chosen from this data set randomly. What is the expected value of X ?

Expected Value

The expected value (or mean) of a discrete random variable X is

$$
E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots x_{n} P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

- The expected value of X is the sum of the value X can take, weighted by the probability it takes those values.
- Suppose we have a data set consisting of values $\{1,1,2,2,2,2,3,4,5,5\}$. Let X be a value chosen from this data set randomly. What is the expected value of X ?

$$
\begin{aligned}
E[X] & =1 P(X=1)+2 P(X=2)+3 P(X=3)+4 P(X=4)+5 P(X=5) \\
& =1 \frac{2}{10}+2 \frac{4}{10}+3 \frac{1}{10}+4 \frac{1}{10}+5 \frac{2}{10}=\frac{27}{10}=2.7
\end{aligned}
$$

Expected Value

The expected value (or mean) of a discrete random variable X is

$$
E[X]=x_{1} P\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\ldots x_{n} P\left(X=x_{n}\right)=\sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)
$$

- The expected value of X is the sum of the value X can take, weighted by the probability it takes those values.
- Suppose we have a data set consisting of values $\{1,1,2,2,2,2,3,4,5,5\}$. Let X be a value chosen from this data set randomly. What is the expected value of X ?

$$
\begin{aligned}
E[X] & =1 P(X=1)+2 P(X=2)+3 P(X=3)+4 P(X=4)+5 P(X=5) \\
& =1 \frac{2}{10}+2 \frac{4}{10}+3 \frac{1}{10}+4 \frac{1}{10}+5 \frac{2}{10}=\frac{27}{10}=2.7
\end{aligned}
$$

- But also notice that

$$
\begin{aligned}
E[X] & =\frac{1}{10}(1 \cdot 2+2 \cdot 4+3 \cdot 1+4 \cdot 1+5 \cdot 2) \\
& =\frac{1}{10}(1+1+2+2+2+2+3+4+5+5)
\end{aligned}
$$

The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome occurs in a long sequence of trials is close to the probability for that outcome.

The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)

Let X be a random variable whose value depends on a random experiment. Suppose the experiment is repeated n times and let \bar{x}_{n} denote the arithmetic mean of the values of X in each trial. As n gets larger, the arithmetic mean \bar{x}_{n} approaches the expected value $E[X]$ of that variable.

Gambler's Ruin

A roulette wheel consists of 37 wedge (18 black, 18 red, 1 green). A player may bet $\$ 10$ that a spun ball will land on a black wedge. If the ball lands on black, the player wins $\$ 10$. Otherwise, the player loses $\$ 10$.

Gambler's Ruin

A roulette wheel consists of 37 wedge (18 black, 18 red, 1 green). A player may bet $\$ 10$ that a spun ball will land on a black wedge. If the ball lands on black, the player wins $\$ 10$. Otherwise, the player loses $\$ 10$.

- Assuming each wedge has equal probability, what is the expected value of the bet?
- Suppose a gambler begins with $\$ 10,000$. What will the gambler's fortune look like after 1000 plays?

Section 2

The Normal Distribution

The Normal Distribution

- The general Normal density curve with mean μ and standard deviation σ is given by the formula

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu) / 2 \sigma} \quad \text { Don't memorize this }
$$

The Normal Distribution

- The general Normal density curve with mean μ and standard deviation σ is given by the formula

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu) / 2 \sigma} \quad \text { Don't memorize this }
$$

The Normal Distribution

Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities by looking at areas under the density curve.

Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the probability that X is between 3 and 4 ?

Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the probability that X is between 3 and 4 ?

The Normal Distribution

Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

- R has a built-in function for computing cummulative probabilites under Normal densities: pnorm (q =... , mean $=.$. , sd =...)

Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

- R has a built-in function for computing cummulative probabilites under Normal densities: pnorm (q =... , mean $=.$. , sd =...)
- For example, the following code computes the area left of 1.5 in the Normal distribution with mean 0 and standard deviation 1 :

```
pnorm(q =1.5 , mean =0 , sd =1 )
## [1] 0.9331928
```


Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

- R has a built-in function for computing cummulative probabilites under Normal densities: pnorm (q =... , mean =... , sd =...)
- For example, the following code computes the area left of 1.5 in the Normal distribution with mean 0 and standard deviation 1 :

```
pnorm(q =1.5 , mean =0 , sd =1 )
```

\#\# [1] 0.9331928
The Normal Distribution

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Find the area between -. 25 and 1.5 under the Normal density with mean 0 and standard deviation 1.
pnorm($q=1.5$, mean $=0$, sd $=1$) $-\operatorname{pnorm}(q=-.25$, mean $=0$, sd =1 $)$
\#\# [1] 0.5318991

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Find the area between -. 25 and 1.5 under the Normal density with mean 0 and standard deviation 1.
pnorm($q=1.5$, mean $=0$, sd $=1$) $-\operatorname{pnorm}(q=-.25$, mean $=0$, sd =1 $)$
\#\# [1] 0.5318991
The Normal Distribution

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Find the area between -. 25 and 1.5 under the Normal density with mean 0 and standard deviation 1.
pnorm($q=1.5$, mean $=0$, sd $=1$) $-\operatorname{pnorm}(q=-.25$, mean $=0$, sd =1 $)$
\#\# [1] 0.5318991
The Normal Distribution

Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Find the area between -. 25 and 1.5 under the Normal density with mean 0 and standard deviation 1.
pnorm($q=1.5$, mean $=0$, sd $=1$) $-\operatorname{pnorm}(q=-.25$, mean $=0$, sd =1 $)$
\#\# [1] 0.5318991
The Normal Distribution

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given value). But how do we compute the area between two values?

- Answer: By computing two cumulative areas and subtracting the results!

Find the area between -. 25 and 1.5 under the Normal density with mean 0 and standard deviation 1.
pnorm($q=1.5$, mean $=0$, sd $=1$) $-\operatorname{pnorm}(q=-.25$, mean $=0$, sd =1 $)$
\#\# [1] 0.5318991
The Normal Distribution

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a given cumulative area.

The Normal Distribution

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a given cumulative area.

The Normal Distribution

- That is, we want to find the .75 quantile (i.e. the 75 th percentile)

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a given cumulative area.

- That is, we want to find the .75 quantile (i.e. the 75 th percentile)
R has a built-in function for that too! qnorm ($\mathrm{p}=\ldots$, mean $=\ldots$, sd $=\ldots$)

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a given cumulative area.

- That is, we want to find the .75 quantile (i.e. the 75 th percentile)
R has a built-in function for that too! qnorm ($\mathrm{p}=\ldots$, mean $=\ldots$, sd $=\ldots$) qnorm $(p=.75$, mean $=0$, $s d=1$)
\#\# [1] 0.6744898

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a given cumulative area.

- That is, we want to find the .75 quantile (i.e. the 75 th percentile)
R has a built-in function for that too! qnorm ($\mathrm{p}=\ldots$, mean $=\ldots$, sd $=\ldots$) qnorm $(p=.75$, mean $=0$, $s d=1$)
\#\# [1] 0.6744898

Scale and Translation Invariance

- Consider a Normal variable X with $\mu=0$ and $\sigma=1$, and another Normal variable Y with mean $\mu=2$ and $\sigma=.25$.

Scale and Translation Invariance

- Consider a Normal variable X with $\mu=0$ and $\sigma=1$, and another Normal variable Y with mean $\mu=2$ and $\sigma=.25$.

The Normal Distribution

Scale and Translation Invariance

- Consider a Normal variable X with $\mu=0$ and $\sigma=1$, and another Normal variable Y with mean $\mu=2$ and $\sigma=.25$.

The Normal Distribution

- The distributions for X and Y have different means and different heights and widths. . .
- But otherwise have identitical shapes!

Scale and Translation Invariance

- Consider a Normal variable X with $\mu=0$ and $\sigma=1$, and another Normal variable Y with mean $\mu=2$ and $\sigma=.25$.

The Normal Distribution of X

- The distributions for X and Y have different means and different heights and widths. . .
- But otherwise have identitical shapes!

Scale and Translation Invariance

- Consider a Normal variable X with $\mu=0$ and $\sigma=1$, and another Normal variable Y with mean $\mu=2$ and $\sigma=.25$.

The Normal Distribution of X

- The distributions for X and Y have different means and different heights and widths. . .
- But otherwise have identical shapes!

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we should still get a Normal random variable

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we should still get a Normal random variable

Theorem

Suppose X is a Normal random variable with mean μ and standard deviation σ. Then $Z=\frac{x-\mu}{\sigma}$ is a Normal random variable with mean 0 and standard deviation 1.

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we should still get a Normal random variable

Theorem

Suppose X is a Normal random variable with mean μ and standard deviation σ. Then $Z=\frac{x-\mu}{\sigma}$ is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the standard Normal.

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we should still get a Normal random variable

Theorem

Suppose X is a Normal random variable with mean μ and standard deviation σ. Then $Z=\frac{x-\mu}{\sigma}$ is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the standard Normal.

The process of subtracting off the mean from a random variable and dividing by the standard deviation is called standardizing.

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we should still get a Normal random variable

Theorem

Suppose X is a Normal random variable with mean μ and standard deviation σ. Then $Z=\frac{x-\mu}{\sigma}$ is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the standard Normal.

The process of subtracting off the mean from a random variable and dividing by the standard deviation is called standardizing.

It's often useful to standardize a variable so that we only need to consider a single density function (the standard Normal density) rather than many (one for each choice of μ and σ)

Section 3

The Central Limit Theorem

Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100 students:

Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100 students:

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

- What does the distribution of sample means \bar{x} look like?

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

- What does the distribution of sample means \bar{x} look like?

The Normal Distribution

- In the previous example, the sampling distribution for each class appeared approximately Normal, regardless of the shape of the population distribution.

The Normal Distribution

- In the previous example, the sampling distribution for each class appeared approximately Normal, regardless of the shape of the population distribution.

The Normal Distribution

Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution

Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution

Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?

Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?

Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?

- As sample size increases, sampling distribution becomes more Normal, with decreasing variance

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ. When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ. When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

A proof of the CLT requires more advanced techniques in probability (See Math 391). But intuitively...

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ. When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

A proof of the CLT requires more advanced techniques in probability (See Math 391). But intuitively. . .

A sample mean is obtained by adding together INDEPENDENT values from the population.
In order to get a very large or very small value, nearly ALL of the independent values need to be extreme.
To get a moderate value, many can be extreme in the opposite direction, or many can be moderate (or several variations in between).
There are more ways to obtain moderate values in an average than to obtain extreme values

Implications for Statistics

- Regardless of the underylying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means descreases as sample size increases

Implications for Statistics

- Regardless of the underylying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means descreases as sample size increases
- We can use properties of the Normal distribution to determine probabilities of obtaining extreme sample statistics

Implications for Statistics

- Regardless of the underylying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means descreases as sample size increases
- We can use properties of the Normal distribution to determine probabilities of obtaining extreme sample statistics
- Statistical inference can be performed using theoretical density functions, in addition to using simulation and bootstrapping

Implications for Statistics

- Regardless of the underylying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means descreases as sample size increases
- We can use properties of the Normal distribution to determine probabilities of obtaining extreme sample statistics
- Statistical inference can be performed using theoretical density functions, in addition to using simulation and bootstrapping

