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In this lecture, we will. . .

• Define and explore Random Variables
• Investigate properties of the Normal Distribution
• Discuss the Central Limit Theorem and its role in statistics
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Random Variables
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Random Variables The Normal Distribution The Central Limit Theorem

Definitions

A random variable is a numeric quantity whose value depends on the outcome of a
random process.

• We use capital letters at the end of the alphabet (W ,X ,Y ,Z) to denote random
variables.

• We use lowercase letters (w , x , y , z) to denote the particular values of a random variable

• We use equation to express events associated to random variables.
• Let X = 5 denotes the event “The random variable X takes the value 5”.

• Events associated to variables have probabilities of occurring.
• P(X = 5) = .5 means X has 50% probability of taking the value 5.
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Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.

• Examples of discrete variables:
• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.
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The Distribution of a Random Variable

We often use histograms or bar charts to visualize discrete random variables.

• Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:
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Distribution for number of 1's in 6 rolls

• We can use the plot to find probabilities of outcomes associated to the variable.
• Calculate P(X ≤ 1). Then find x so that P(X ≤ x) ≥ .75.
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The Distribution of a Continuous Variable

• We use density plots to visualize the distribution of a continuous variable. Areas
under the plot correspond to probabilities.

• The distribution for the amount of time T until a radioactive particle decays is given
below:
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Distribution for time until particle decays

• The probability that it takes between 0.5 and 1.5 units of time to decay is the area
under the curve between 0.5 and 1.5. P(0.5 < T < 1.5) =
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The Distribution of a Continuous Variable
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• The probability that it takes between 0.5 and 1.5 units of time to decay is the area
under the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = 0.34
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

• Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:
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Expected Value

The expected value (or mean) of a discrete random variable X is

E [X ] = x1P(X = x1) + x2P(X = x2) + . . . xnP(X = xn) =
n∑

i=1

xi P(X = xi )

• The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.
• Suppose we have a data set consisting of values {1, 1, 2, 2, 2, 2, 3, 4, 5, 5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?

E [X ] =1P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5)

=1
2
10

+ 2
4
10

+ 3
1
10

+ 4
1
10

+ 5
2
10

=
27
10

= 2.7

• But also notice that

E [X ] =
1
10

(1 · 2 + 2 · 4 + 3 · 1 + 4 · 1 + 5 · 2)

=
1
10

(1 + 1 + 2 + 2 + 2 + 2 + 3 + 4 + 5 + 5)
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The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)
Let X be a random variable whose value depends on a random experiment. Suppose the
experiment is repeated n times and let x̄n denote the arithmetic mean of the values of X in
each trial. As n gets larger, the arithmetic mean x̄n approaches the expected value E [X ] of
that variable.
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Gambler’s Ruin

A roulette wheel consists of 37 wedge (18 black, 18 red, 1 green). A player may bet $10
that a spun ball will land on a black wedge. If the ball lands on black, the player wins $10.
Otherwise, the player loses $10.

• Assuming each wedge has equal probability, what is the expected value of the bet?

• Suppose a gambler begins with $10,000. What will the gambler’s fortune look like
after 1000 plays?
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Section 2

The Normal Distribution
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The Normal Distribution

• The general Normal density curve with mean µ and standard deviation σ is given by
the formula

f (x) = 1√
2πσ2

e−(x−µ)/2σ Don’t memorize this
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The Normal Distribution
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 4?

Prob = 0.14
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The Normal Distribution
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

• R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

• For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:

pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928

Area = 0.93
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0.2

0.3

0.4

−3 −2 −1 0 1 2 3
X

P
ro
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The Normal Distribution
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densities: pnorm(q =... , mean =... , sd =... )

• For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:

pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

• Answer: By computing two cumulative areas and subtracting the results!
Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
• Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )
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Random Variables The Normal Distribution The Central Limit Theorem

Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
• Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
• Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991

Area = 0.53

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
X

P
ro

ba
bi

lit
y

The Normal Distribution

Nate Wells Random Variables and the Normal Distribution Math 141, 3/31/21 21 / 35



Random Variables The Normal Distribution The Central Limit Theorem

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.

Area = 0.75
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• That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )
qnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
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Scale and Translation Invariance

• Consider a Normal variable X with µ = 0 and σ = 1, and another Normal variable Y
with mean µ = 2 and σ = .25.
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The Normal Distribution

• The distributions for X and Y have different means and different heights and
widths. . .

• But otherwise have identitical shapes!
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Scale and Translation Invariance

• Consider a Normal variable X with µ = 0 and σ = 1, and another Normal variable Y
with mean µ = 2 and σ = .25.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)
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Section 3

The Central Limit Theorem
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Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100
students:
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Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the
average score x̄ for each sample

• What does the distribution of sample means x̄ look like?
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The Normal Distribution

• In the previous example, the sampling distribution for each class appeared
approximately Normal, regardless of the shape of the population distribution.
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Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution

0

50

100

150

200

250

40 60 80 100
scores

co
un

t

Nate Wells Random Variables and the Normal Distribution Math 141, 3/31/21 32 / 35



Random Variables The Normal Distribution The Central Limit Theorem

Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution

0

50

100

150

200

250

40 60 80 100
scores

co
un

t

Nate Wells Random Variables and the Normal Distribution Math 141, 3/31/21 32 / 35



Random Variables The Normal Distribution The Central Limit Theorem

Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample
(keeping the number of samples drawn constant)?
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• As sample size increases, sampling distribution becomes more Normal, with
decreasing variance
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The Central Limit Theorem

Theorem
Suppose an SRS of size n is drawn from a population with mean µ and standard deviation
σ. When n is large, the sample mean x̄ is approximately Normally distributed, with mean
µ and standard deviation σ√

n .

A proof of the CLT requires more advanced techniques in probability (See Math 391). But
intuitively. . .

A sample mean is obtained by adding together INDEPENDENT values from the
population.
In order to get a very large or very small value, nearly ALL of the independent
values need to be extreme.
To get a moderate value, many can be extreme in the opposite direction, or many
can be moderate (or several variations in between).
There are more ways to obtain moderate values in an average than to obtain
extreme values
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Random Variables The Normal Distribution The Central Limit Theorem

Implications for Statistics

• Regardless of the underylying population distribution, when sample size is large, the
distribution of sample means is predictable, and variance in means descreases as
sample size increases

• We can use properties of the Normal distribution to determine probabilities of
obtaining extreme sample statistics
• Statistical inference can be performed using theoretical density functions, in addition
to using simulation and bootstrapping
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