# Inference for Two Means 

Nate Wells

Math 141, 4/21/21

## Outline

In this lecture, we will. . .

- Investigate the theoretical distribution for difference in two means.
- Create confidence intervals and perform hypothesis tests using $t$ distribution for differences in means.
- Compare inference procedures for two independent samples vs. paired samples


## Section 1

## Inference for 2 Means

## Differences in Means

- Consider the following questions:


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
- Does daily consumption of coffee improve cardiovascular health compared to a control?


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
- Does daily consumption of coffee improve cardiovascular health compared to a control?
- Is there a significant difference in price between .99 and 1.0 carat diamonds?


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
- Does daily consumption of coffee improve cardiovascular health compared to a control?
- Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
- Does daily consumption of coffee improve cardiovascular health compared to a control?
- Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.
- Groups could be formed from...


## Differences in Means

- Consider the following questions:
- Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
- Does daily consumption of coffee improve cardiovascular health compared to a control?
- Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.
- Groups could be formed from...
- Two different populations.
- Two subsets within the same sample distinguished by levels of a categorical variable.
- Two treatment groups in an experiment.


## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.


## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.
- Goal: Estimate the value of the parameter $\mu_{1}-\mu_{2}$ using the statistic $\bar{x}_{1}-\bar{x}_{2}$.


## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.
- Goal: Estimate the value of the parameter $\mu_{1}-\mu_{2}$ using the statistic $\bar{x}_{1}-\bar{x}_{2}$.
- We need to know the shape, center, and spread of distribution of $\bar{x}_{1}-\bar{x}_{2}$.


## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.
- Goal: Estimate the value of the parameter $\mu_{1}-\mu_{2}$ using the statistic $\bar{x}_{1}-\bar{x}_{2}$.
- We need to know the shape, center, and spread of distribution of $\bar{x}_{1}-\bar{x}_{2}$.
- By CLT, the distributions of $\bar{x}_{1}$ and $\bar{x}_{2}$ are approximately Normal.


## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.
- Goal: Estimate the value of the parameter $\mu_{1}-\mu_{2}$ using the statistic $\bar{x}_{1}-\bar{x}_{2}$.
- We need to know the shape, center, and spread of distribution of $\bar{x}_{1}-\bar{x}_{2}$.
- By CLT, the distributions of $\bar{x}_{1}$ and $\bar{x}_{2}$ are approximately Normal.



## Distribution for Difference in Means

- Suppose random samples of size $n_{1}$ and $n_{2}$ are drawn independentally from populations with means $\mu_{1}$ and $\mu_{2}$ and standard deviations $\sigma_{1}$ and $\sigma_{2}$, respectively.
- Goal: Estimate the value of the parameter $\mu_{1}-\mu_{2}$ using the statistic $\bar{x}_{1}-\bar{x}_{2}$.
- We need to know the shape, center, and spread of distribution of $\bar{x}_{1}-\bar{x}_{2}$.
- The distribtuion of the difference $\bar{x}_{1}-\bar{x}_{2}$ is approximately Normal also

Sampling Distribution for $\mathrm{x} 1-\mathrm{x} 2$


## New Slide

- By the Central Limit Theorem, as both $n_{1}$ and $n_{2}$ get larger, the distribution of difference in sample means $\bar{x}_{1}-\bar{x}_{2}$ becomes more Normally distributed, with mean $\mu_{1}-\mu_{2}$ and standard error $S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$


## New Slide

- By the Central Limit Theorem, as both $n_{1}$ and $n_{2}$ get larger, the distribution of difference in sample means $\bar{x}_{1}-\bar{x}_{2}$ becomes more Normally distributed, with mean $\mu_{1}-\mu_{2}$ and standard error $S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
- In practice, we estimate the parameters $\sigma_{1}$ and $\sigma^{2}$ with the sampel statistics $s_{1}$ and $s_{2}$


## New Slide

- By the Central Limit Theorem, as both $n_{1}$ and $n_{2}$ get larger, the distribution of difference in sample means $\bar{x}_{1}-\bar{x}_{2}$ becomes more Normally distributed, with mean $\mu_{1}-\mu_{2}$ and standard error $S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
- In practice, we estimate the parameters $\sigma_{1}$ and $\sigma^{2}$ with the sampel statistics $s_{1}$ and $s_{2}$
- Consider the standardized difference in sample means:

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\mathrm{SE}}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

## New Slide

- By the Central Limit Theorem, as both $n_{1}$ and $n_{2}$ get larger, the distribution of difference in sample means $\bar{x}_{1}-\bar{x}_{2}$ becomes more Normally distributed, with mean $\mu_{1}-\mu_{2}$ and standard error $S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
- In practice, we estimate the parameters $\sigma_{1}$ and $\sigma^{2}$ with the sampel statistics $s_{1}$ and $s_{2}$
- Consider the standardized difference in sample means:

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\mathrm{SE}}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

## Theorem

The standardized difference $t$ is approximately $t$-distributed with degrees of freedom $d f=\min \left\{n_{1}-1, n_{2}-1\right\}$.

This approximation is appropriate either when both sample sizes are large (i.e. $n_{1}, n_{2} \geq 30$ ), or when both populations are approximately Normally distributed.

## Diamonds are Forever

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

- To answer, we collect random samples of 301.0 and 23.99 carat diamonds.


## Diamonds are Forever

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

- To answer, we collect random samples of 301.0 and 23.99 carat diamonds.
- To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc


## Diamonds are Forever

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

- To answer, we collect random samples of 301.0 and 23.99 carat diamonds.
- To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics


## Diamonds are Forever

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

- To answer, we collect random samples of 301.0 and 23.99 carat diamonds.
- To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics



## Diamonds are Forever

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

- To answer, we collect random samples of 301.0 and 23.99 carat diamonds.
- To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics



## Hypothesis Test

(1) Our null and alternate hypotheses:

$$
H_{0}: \mu_{1}-\mu_{99}=0 \quad H_{0}: \mu_{1}-\mu_{99}>0
$$

## Hypothesis Test

(1) Our null and alternate hypotheses:

$$
H_{0}: \mu_{1}-\mu_{99}=0 \quad H_{0}: \mu_{1}-\mu_{99}>0
$$

(2) Assess conditions:

## Hypothesis Test

(1) Our null and alternate hypotheses:

$$
H_{0}: \mu_{1}-\mu_{99}=0 \quad H_{0}: \mu_{1}-\mu_{99}>0
$$

(2) Assess conditions:


## Hypothesis Test

(1) Our null and alternate hypotheses:

$$
H_{0}: \mu_{1}-\mu_{99}=0 \quad H_{0}: \mu_{1}-\mu_{99}>0
$$

(2) Assess conditions:


- The 1.0 carat diamonds show evidence of right-skew, but since $n \geq 30$, this is probably fine.


## Hypothesis Test

© Our null and alternate hypotheses:

$$
H_{0}: \mu_{1}-\mu_{99}=0 \quad H_{0}: \mu_{1}-\mu_{99}>0
$$

(2) Assess conditions:


- The 1.0 carat diamonds show evidence of right-skew, but since $n \geq 30$, this is probably fine.
- By construction, the two samples are independent. And observations within each sample are independent as well.


## Hypothesis Test II

(3) We compute our test statistic

## Hypothesis Test II

(3) We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

## Hypothesis Test II

(3) We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

(4) Calculate the P-Value.

## Hypothesis Test II

3 We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

(4) Calculate the P-Value.

- The theory-based method says $t$ is approximately $t$-distributed with 22 degrees of freedom: $\mathrm{df}=\min (23-1,30-1)=22$


## Hypothesis Test II

3 We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

(4) Calculate the P-Value.

- The theory-based method says $t$ is approximately $t$-distributed with 22 degrees of freedom: $\mathrm{df}=\min (23-1,30-1)=22$
p_value<-1 - pt ( 2.802, df = 22)
p_value
\#\# [1] 0.0052


## Hypothesis Test II

3 We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

(4) Calculate the P-Value.

- The theory-based method says $t$ is approximately $t$-distributed with 22 degrees of freedom: $\mathrm{df}=\min (23-1,30-1)=22$
p_value<-1 - pt ( 2.802, df = 22)
p_value
\#\# [1] 0.0052
(5) Conclude


## Hypothesis Test II

(3) We compute our test statistic

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E}=\frac{5585-4451}{\sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}}=2.802
$$

(4) Calculate the P-Value.

- The theory-based method says $t$ is approximately $t$-distributed with 22 degrees of freedom: $\mathrm{df}=\min (23-1,30-1)=22$
p_value<-1 - pt ( 2.802, df = 22)
p_value
\#\# [1] 0.0052
(5) Conclude
- At the $\alpha=0.01$ significance level, we reject the null hypothesis. This sample suggests 1.0 carat diamonds command a higher price than is explained by increase in weight alone.


## Comparison with infer

```
set.seed(101)
diamonds_null <- diamonds %>% specify(ppc ~ carat) %>%
    hypothesize(null = "independence") %>%
    generate(reps = 5000, type = "permute") %>%
    calculate(stat = "diff in means", order = c("1", "0.99"))
diamonds_null %>% visualize()+shade_p_value(obs_stat = 1135, direction = "right")
```

Simulation-Based Null Distribution

diamonds_null \%>\% get_p_value(obs_stat = 1135, direction = "right" )
\#\# \# A tibble: $1 \times 1$
\#\# p_value
\#\# <dbl>
\#\# 10.0042

## An Equivalent Confidence Interval

Goal: Create a confidence interval that corresponds to one-sided $\alpha=0.01$ significance

## An Equivalent Confidence Interval

Goal: Create a confidence interval that corresponds to one-sided $\alpha=0.01$ significance


## An Equivalent Confidence Interval

Goal: Create a confidence interval that corresponds to one-sided $\alpha=0.01$ significance


What is the $t^{*}$ critical value for $98 \%$ confidence?
t_star<- qt(.99, df = 22)
t_star
\#\# [1] 2.5

## An Equivalent Confidence Interval

Goal: Create a confidence interval that corresponds to one-sided $\alpha=0.01$ significance


What is the $t^{*}$ critical value for $98 \%$ confidence?
t_star<- qt(.99, df = 22)
t_star
\#\# [1] 2.5
Note that our observed $t$ statistic was $t=2.802$, which was more extreme than the critical value for $98 \%$ confidence

## Confidence Interval

Create a $98 \%$ confidence interval to estimate the difference $\mu_{1}-\mu_{99}$

## Confidence Interval

Create a $98 \%$ confidence interval to estimate the difference $\mu_{1}-\mu_{99}$
The formula for our confidence interval is

$$
\left(\bar{x}_{1}-\bar{x}_{99}\right) \pm t^{*} \cdot S E
$$

## Confidence Interval

Create a $98 \%$ confidence interval to estimate the difference $\mu_{1}-\mu_{99}$
The formula for our confidence interval is

$$
\left(\bar{x}_{1}-\bar{x}_{99}\right) \pm t^{*} \cdot S E
$$

Giving an interval of

$$
(5585-4451) \pm 2.508 \cdot \sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}
$$

or
(118.42, 2149.58)

## Confidence Interval

Create a $98 \%$ confidence interval to estimate the difference $\mu_{1}-\mu_{99}$
The formula for our confidence interval is

$$
\left(\bar{x}_{1}-\bar{x}_{99}\right) \pm t^{*} \cdot S E
$$

Giving an interval of

$$
(5585-4451) \pm 2.508 \cdot \sqrt{\frac{1614^{2}}{30}+\frac{1332^{2}}{23}}
$$

or
(118.42, 2149.58)

Since this interval does not contain 0 , we conclude that there IS a price increase for 1.0 carat diamonds.

## Comparison with infer

```
set.seed(101)
diamonds_boot <- diamonds %>% specify(ppc ~ carat) %>%
    generate(reps = 5000, type = "bootstrap") %>%
    calculate(stat = "diff in means", order = c("1", "0.99"))
diamonds_ci <- diamonds_boot %>% get_ci(level = 0.98, type = "percentile")
diamonds_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 247. 2113.
diamonds_boot %>%visualize()+ shade_ci(endpoints = diamonds_ci)
```

Simulation-Based Bootstrap Distribution


## Section 2

## Inference for Paired Samples

## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
- But if matching is used in sample design, it is not appropriate to use the 2 sample procedures. (Why?)


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
- But if matching is used in sample design, it is not appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the difference in measurements in each pair of individuals


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
- But if matching is used in sample design, it is not appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the difference in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1 -sample procedures for mean.


## Matched Pairs

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
- It is possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
- But if matching is used in sample design, it is not appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the difference in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1 -sample procedures for mean.
- Rather than looking at the difference in means, we look at the mean of differences!


## The World's Fastest Swimsuit

In the 2008 Olympics, controversy erupted over whether a new swimsuit design provided an unfair advantage to swimmers. Eventually, the International Swimming Organization banned the new suit. But can a certain suit really make a swimmer faster?


## Data

A study analyzed max velocities for 12 pro swimmers with and without the suit:

| swimmer | with_suit | without_suit | difference |
| ---: | ---: | ---: | ---: |
| 1 | 1.6 | 1.5 | 0.08 |
| 2 | 1.5 | 1.4 | 0.10 |
| 3 | 1.4 | 1.4 | 0.07 |
| 4 | 1.4 | 1.3 | 0.08 |
| 5 | 1.2 | 1.1 | 0.10 |
| 6 | 1.8 | 1.6 | 0.11 |
| 7 | 1.6 | 1.6 | 0.05 |
| 8 | 1.6 | 1.5 | 0.05 |
| 9 | 1.6 | 1.5 | 0.06 |
| 10 | 1.5 | 1.4 | 0.08 |
| 11 | 1.5 | 1.4 | 0.05 |
| 12 | 1.5 | 1.4 | 0.10 |

## Data

A study analyzed max velocities for 12 pro swimmers with and without the suit:

| swimmer | with_suit | without_suit | difference |
| ---: | ---: | ---: | ---: |
| 1 | 1.6 | 1.5 | 0.08 |
| 2 | 1.5 | 1.4 | 0.10 |
| 3 | 1.4 | 1.4 | 0.07 |
| 4 | 1.4 | 1.3 | 0.08 |
| 5 | 1.2 | 1.1 | 0.10 |
| 6 | 1.8 | 1.6 | 0.11 |
| 7 | 1.6 | 1.6 | 0.05 |
| 8 | 1.6 | 1.5 | 0.05 |
| 9 | 1.6 | 1.5 | 0.06 |
| 10 | 1.5 | 1.4 | 0.08 |
| 11 | 1.5 | 1.4 | 0.05 |
| 12 | 1.5 | 1.4 | 0.10 |

- Without performing any statistical inference, what is the likely conclusion to draw from this data?


## The Setup

We want to determine whether the average max velocity with the suit is larger than the average without the suit.

## The Setup

We want to determine whether the average max velocity with the suit is larger than the average without the suit.

- What is wrong with the following infer code? (If you try to run it, you'll get an error) swim \%>\% specify(with_suit ~ without_suit) \%>\%
hypothesize(null = "independence") \%>\%
generate(reps $=1000$, type $=$ "permute") \%>\%
calculate(stat $=$ "diff in means", order = c("with_suit", "without_suit"))


## The Setup

We want to determine whether the average max velocity with the suit is larger than the average without the suit.

- What is wrong with the following infer code? (If you try to run it, you'll get an error) swim \%>\% specify(with_suit ~ without_suit) \%>\%
hypothesize(null = "independence") \%>\%
generate(reps $=1000$, type $=$ "permute") \%>\%
calculate(stat = "diff in means", order = c("with_suit", "without_suit"))
- Review the data again...

| swimmer | with_suit | without_suit | difference |
| ---: | ---: | ---: | ---: |
| 1 | 1.6 | 1.5 | 0.08 |
| 2 | 1.5 | 1.4 | 0.10 |
| 3 | 1.4 | 1.4 | 0.07 |
| 4 | 1.4 | 1.3 | 0.08 |
| 5 | 1.2 | 1.1 | 0.10 |
| 6 | 1.8 | 1.6 | 0.11 |

The Setup, redux

We want to determine whether the average difference in max velocity (with - without) is positive. Let $\mu$ be the average difference.

$$
H_{0}: \mu=0 \quad H_{a}: \mu>0
$$

## The Setup, redux

We want to determine whether the average difference in max velocity (with - without) is positive. Let $\mu$ be the average difference.

```
set.seed(1234)
swim_stat <- swim %>% specify(response = difference) %>%
    calculate(stat = "mean")
swim_stat
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.0775
swim_null <- swim %>% specify(response = difference) %>%
    hypothesize(null = "point", mu = 0) %>%
    generate(reps = 1000, type = "bootstrap") %>%
    calculate(stat = "mean")
```


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution


- P-Value?


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution

- P-Value?

- This study gives good evidence at the $\alpha=0.01$ significance level that the suit does increase max velocity.


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution

- P-Value?

- This study gives good evidence at the $\alpha=0.01$ significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution

- P-Value?

- This study gives good evidence at the $\alpha=0.01$ significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?
- If the average max velocity is about 1.4 , this is about a $5 \%$ increase in speed.


## Conclusion

swim_null \%>\% visualise()+shade_p_value(obs_stat = swim_stat, direction = "right")
Simulation-Based Null Distribution

- P-Value?

- This study gives good evidence at the $\alpha=0.01$ significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?
- If the average max velocity is about 1.4 , this is about a $5 \%$ increase in speed.
- In the 2008 Beijing Olympics, swimmers wearing the suit...
- Were awarded $98 \%$ of all medals (including 33 of 36 gold medals).
- Represented 23 of the total 25 world records broken.

