## Inference for Two Means

Nate Wells

Math 141, 4/21/21

# Outline

In this lecture, we will...

- Investigate the theoretical distribution for difference in two means.
- Create confidence intervals and perform hypothesis tests using *t* distribution for differences in means.
- Compare inference procedures for two independent samples vs. paired samples

# Section 1

## Inference for 2 Means

• Consider the following questions:

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
  - Does daily consumption of coffee improve cardiovascular health compared to a control?

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
  - Does daily consumption of coffee improve cardiovascular health compared to a control?
  - Is there a significant difference in price between .99 and 1.0 carat diamonds?

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
  - Does daily consumption of coffee improve cardiovascular health compared to a control?
  - Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
  - Does daily consumption of coffee improve cardiovascular health compared to a control?
  - Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.
- Groups could be formed from...

- Consider the following questions:
  - Are variations in test scores between two sections of Math 141 just due to random sampling, or do they suggest an underlying difference?
  - Does daily consumption of coffee improve cardiovascular health compared to a control?
  - Is there a significant difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two groups.
- Groups could be formed from...
  - Two different populations.
  - Two subsets within the same sample distinguished by levels of a categorical variable.
  - Two treatment groups in an experiment.

 Suppose random samples of size n<sub>1</sub> and n<sub>2</sub> are drawn independentally from populations with means μ<sub>1</sub> and μ<sub>2</sub> and standard deviations σ<sub>1</sub> and σ<sub>2</sub>, respectively.

- Suppose random samples of size  $n_1$  and  $n_2$  are drawn **independentally** from populations with means  $\mu_1$  and  $\mu_2$  and standard deviations  $\sigma_1$  and  $\sigma_2$ , respectively.
- **Goal**: Estimate the value of the parameter  $\mu_1 \mu_2$  using the statistic  $\bar{x}_1 \bar{x}_2$ .

- Suppose random samples of size  $n_1$  and  $n_2$  are drawn **independentally** from populations with means  $\mu_1$  and  $\mu_2$  and standard deviations  $\sigma_1$  and  $\sigma_2$ , respectively.
- Goal: Estimate the value of the parameter  $\mu_1 \mu_2$  using the statistic  $\bar{x}_1 \bar{x}_2$ .
  - We need to know the shape, center, and spread of distribution of  $\bar{x}_1 \bar{x}_2$ .

- Suppose random samples of size  $n_1$  and  $n_2$  are drawn **independentally** from populations with means  $\mu_1$  and  $\mu_2$  and standard deviations  $\sigma_1$  and  $\sigma_2$ , respectively.
- Goal: Estimate the value of the parameter  $\mu_1 \mu_2$  using the statistic  $\bar{x}_1 \bar{x}_2$ .
  - We need to know the shape, center, and spread of distribution of  $\bar{x}_1 \bar{x}_2$ .
- By CLT, the distributions of  $\bar{x}_1$  and  $\bar{x}_2$  are approximately Normal.

- Suppose random samples of size n<sub>1</sub> and n<sub>2</sub> are drawn independentally from populations with means μ<sub>1</sub> and μ<sub>2</sub> and standard deviations σ<sub>1</sub> and σ<sub>2</sub>, respectively.
- Goal: Estimate the value of the parameter  $\mu_1 \mu_2$  using the statistic  $\bar{x}_1 \bar{x}_2$ .
  - We need to know the shape, center, and spread of distribution of  $\bar{x}_1 \bar{x}_2$ .
- By CLT, the distributions of  $\bar{x}_1$  and  $\bar{x}_2$  are approximately Normal.





- Suppose random samples of size n<sub>1</sub> and n<sub>2</sub> are drawn independentally from populations with means μ<sub>1</sub> and μ<sub>2</sub> and standard deviations σ<sub>1</sub> and σ<sub>2</sub>, respectively.
- Goal: Estimate the value of the parameter  $\mu_1 \mu_2$  using the statistic  $\bar{x}_1 \bar{x}_2$ .
  - We need to know the shape, center, and spread of distribution of  $\bar{x}_1 \bar{x}_2$ .
- The distribution of the difference  $\bar{x}_1 \bar{x}_2$  is approximately Normal also



• By the Central Limit Theorem, as both  $n_1$  and  $n_2$  get larger, the distribution of difference in sample means  $\bar{x}_1 - \bar{x}_2$  becomes more Normally distributed, with mean

$$\mu_1 - \mu_2$$
 and standard error  $SE = \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$ 

 By the Central Limit Theorem, as both n<sub>1</sub> and n<sub>2</sub> get larger, the distribution of difference in sample means x
<sub>1</sub> - x
<sub>2</sub> becomes more Normally distributed, with mean

$$\mu_1-\mu_2$$
 and standard error  ${\it SE}=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$ 

• In practice, we estimate the parameters  $\sigma_1$  and  $\sigma^2$  with the sampel statistics  $s_1$  and  $s_2$ 

 By the Central Limit Theorem, as both n<sub>1</sub> and n<sub>2</sub> get larger, the distribution of difference in sample means x
<sub>1</sub> - x
<sub>2</sub> becomes more Normally distributed, with mean

$$\mu_1 - \mu_2$$
 and standard error  $SE = \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$ 

- In practice, we estimate the parameters  $\sigma_1$  and  $\sigma^2$  with the sampel statistics  $s_1$  and  $s_2$
- Consider the standardized difference in sample means:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\text{SE}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 By the Central Limit Theorem, as both n<sub>1</sub> and n<sub>2</sub> get larger, the distribution of difference in sample means x
<sub>1</sub> - x
<sub>2</sub> becomes more Normally distributed, with mean

$$\mu_1-\mu_2$$
 and standard error  ${\it SE}=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$ 

- In practice, we estimate the parameters  $\sigma_1$  and  $\sigma^2$  with the sampel statistics  $s_1$  and  $s_2$
- Consider the standardized difference in sample means:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\text{SE}} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

### Theorem

The standardized difference t is approximately t-distributed with degrees of freedom  $df = \min\{n_1 - 1, n_2 - 1\}.$ 

This approximation is appropriate either when both sample sizes are large (i.e.  $n_1, n_2 \ge 30$ ), or when both populations are approximately Normally distributed.

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds beyond what you would expect due to increase in weight?

• To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
  - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
  - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
  - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics



- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
  - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics



• Our null and alternate hypotheses:

$$H_0: \mu_1 - \mu_{99} = 0 \qquad H_0: \mu_1 - \mu_{99} > 0$$

1 Our null and alternate hypotheses:

$$H_0: \mu_1 - \mu_{99} = 0 \qquad H_0: \mu_1 - \mu_{99} > 0$$

### • Our null and alternate hypotheses:

$$H_0: \mu_1 - \mu_{99} = 0 \qquad H_0: \mu_1 - \mu_{99} > 0$$



### • Our null and alternate hypotheses:

$$H_0: \mu_1 - \mu_{99} = 0 \qquad H_0: \mu_1 - \mu_{99} > 0$$



 The 1.0 carat diamonds show evidence of right-skew, but since n ≥ 30, this is probably fine.

### • Our null and alternate hypotheses:

$$H_0: \mu_1 - \mu_{99} = 0 \qquad H_0: \mu_1 - \mu_{99} > 0$$



- The 1.0 carat diamonds show evidence of right-skew, but since n ≥ 30, this is probably fine.
- By construction, the two samples are independent. And observations within each sample are independent as well.

**8** We compute our test statistic

### **8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

### **8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

O Calculate the P-Value.

**8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

- 4 Calculate the P-Value.
- The theory-based method says t is approximately t-distributed with 22 degrees of freedom: df = min(23 1, 30 1) = 22

**8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

#### 4 Calculate the P-Value.

The theory-based method says t is approximately t-distributed with 22 degrees of freedom: df = min(23 - 1, 30 - 1) = 22

p\_value<-1 - pt( 2.802, df = 22)
p\_value</pre>

## [1] 0.0052

**8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

#### 4 Calculate the P-Value.

The theory-based method says t is approximately t-distributed with 22 degrees of freedom: df = min(23 - 1, 30 - 1) = 22

p\_value<-1 - pt( 2.802, df = 22)
p\_value</pre>

## [1] 0.0052

6 Conclude

**8** We compute our test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{5585 - 4451}{\sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}} = 2.802$$

- 4 Calculate the P-Value.
- The theory-based method says t is approximately t-distributed with 22 degrees of freedom: df = min(23 1, 30 1) = 22

p\_value<-1 - pt( 2.802, df = 22)
p\_value</pre>

- ## [1] 0.0052
  - 6 Conclude
  - At the  $\alpha = 0.01$  significance level, we reject the null hypothesis. This sample suggests 1.0 carat diamonds command a higher price than is explained by increase in weight alone.

### Comparison with infer

```
set.seed(101)
diamonds_null <- diamonds %>% specify(ppc ~ carat) %>%
hypothesize(null = "independence") %>%
generate(reps = 5000, type = "permute") %>%
calculate(stat = "diff in means", order = c("1", "0.99"))
diamonds_null %>% visualize()+shade_p_value(obs_stat = 1135, direction = "right")
```



diamonds\_null %>% get\_p\_value(obs\_stat = 1135, direction = "right" )

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0042
```

Goal: Create a confidence interval that corresponds to **one-sided**  $\alpha = 0.01$  significance

#### Goal: Create a confidence interval that corresponds to **one-sided** $\alpha = 0.01$ significance



#### Goal: Create a confidence interval that corresponds to **one-sided** $\alpha = 0.01$ significance



What is the t\* critical value for 98% confidence? t\_star<- qt(.99, df = 22) t\_star

## [1] 2.5

#### Goal: Create a confidence interval that corresponds to **one-sided** $\alpha = 0.01$ significance



What is the t\* critical value for 98% confidence? t\_star<- qt(.99, df = 22) t\_star

## [1] 2.5

Note that our observed t statistic was t = 2.802, which was more extreme than the critical value for 98% confidence

Create a 98% confidence interval to estimate the difference  $\mu_1 - \mu_{99}$ 

Create a 98% confidence interval to estimate the difference  $\mu_1-\mu_{99}$ 

The formula for our confidence interval is

$$(\bar{x}_1 - \bar{x}_{99}) \pm t^* \cdot SE$$

Create a 98% confidence interval to estimate the difference  $\mu_{1}-\mu_{99}$ 

The formula for our confidence interval is

$$(ar{x}_1 - ar{x}_{99}) \pm t^* \cdot SE$$

Giving an interval of

$$(5585 - 4451) \pm 2.508 \cdot \sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}$$

or

(118.42, 2149.58)

Create a 98% confidence interval to estimate the difference  $\mu_{1}-\mu_{99}$ 

The formula for our confidence interval is

$$(ar{x}_1 - ar{x}_{99}) \pm t^* \cdot SE$$

Giving an interval of

$$(5585 - 4451) \pm 2.508 \cdot \sqrt{\frac{1614^2}{30} + \frac{1332^2}{23}}$$

or

#### (118.42, 2149.58)

Since this interval does not contain 0, we conclude that there IS a price increase for  $1.0\ carat$  diamonds.

### Comparison with infer

```
set.seed(101)
diamonds_boot <- diamonds %>% specify(ppc - carat) %>%
generate(reps = 5000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("1", "0.99"))
diamonds_ci <- diamonds_boot %>% get_ci(level = 0.98, type = "percentile")
diamonds_ci
## # A tibble: 1 x 2
## lower_ci upper_ci
## _ odbl> _ odbl>
```

```
## 1 247. 2113.
diamonds boot %>%visualize()+ shade_ci(endpoints = diamonds_ci)
```



Simulation–Based Bootstrap Distribution

Nate Wells

# Section 2

# Inference for Paired Samples

• Suppose you intend to design an experiment to determine whether the mean of two populations are equal.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
  - But if matching is used in sample design, it is not appropriate to use the 2 sample procedures. (Why?)

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
  - But if matching is used in sample design, it is **not** appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
  - But if matching is used in sample design, it is **not** appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1-sample procedures for mean.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
  - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
  - But if matching is used in sample design, it is **not** appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1-sample procedures for mean.
  - Rather than looking at the difference in means, we look at the mean of differences!

## The World's Fastest Swimsuit

In the 2008 Olympics, controversy erupted over whether a new swimsuit design provided an unfair advantage to swimmers. Eventually, the International Swimming Organization banned the new suit. But can a certain suit really make a swimmer faster?



## Data

| A study anal | yzed max velocities | for 12 pro sv | wimmers with | and without the suit: |
|--------------|---------------------|---------------|--------------|-----------------------|
|--------------|---------------------|---------------|--------------|-----------------------|

| swimmer  | with_suit  | without_suit | difference   |
|----------|------------|--------------|--------------|
| 1        | 1.6        | 1.5          | 0.08         |
| 2        | 1.5        | 1.4          | 0.10         |
| 3        | 1.4        | 1.4          | 0.07         |
| 4        | 1.4        | 1.3          | 0.08         |
| 5        | 1.2        | 1.1          | 0.10         |
| 6        | 1.8        | 1.6          | 0.11         |
| 7        | 1.6        | 1.6          | 0.05         |
| 8        | 1.6        | 1.5          | 0.05         |
| 9        | 1.6        | 1.5          | 0.06         |
| 10       | 1.5        | 1.4          | 0.08         |
| 11<br>12 | 1.5<br>1.5 | 1.4<br>1.4   | 0.05<br>0.10 |

## Data

| A SLUDY ANALYZED MAX VEIOCILIES IOF 12 PIO SWIMMERS WILL AND WILLIOUL LIES | A | study | analyzed | max | velocities | for | 12 | pro | swimmers | with | and | without | the si | uit |
|----------------------------------------------------------------------------|---|-------|----------|-----|------------|-----|----|-----|----------|------|-----|---------|--------|-----|
|----------------------------------------------------------------------------|---|-------|----------|-----|------------|-----|----|-----|----------|------|-----|---------|--------|-----|

| swimmer | with_suit | without_suit | difference |
|---------|-----------|--------------|------------|
| 1       | 1.6       | 1.5          | 0.08       |
| 2       | 1.5       | 1.4          | 0.10       |
| 3       | 1.4       | 1.4          | 0.07       |
| 4       | 1.4       | 1.3          | 0.08       |
| 5       | 1.2       | 1.1          | 0.10       |
| 6       | 1.8       | 1.6          | 0.11       |
| 7       | 1.6       | 1.6          | 0.05       |
| 8       | 1.6       | 1.5          | 0.05       |
| 9       | 1.6       | 1.5          | 0.06       |
| 10      | 1.5       | 1.4          | 0.08       |
| 11      | 1.5       | 1.4          | 0.05       |
| 12      | 1.5       | 1.4          | 0.10       |

• Without performing any statistical inference, what is the likely conclusion to draw from this data?

## The Setup

We want to determine whether the *average* max velocity with the suit is larger than the average without the suit.

## The Setup

We want to determine whether the *average* max velocity with the suit is larger than the average without the suit.

```
    What is wrong with the following infer code? (If you try to run it, you'll get an error)
    swim %>% specify(with_suit ~ without_suit) %>%
    hypothesize(null = "independence") %>%
    generate(reps = 1000, type = "permute") %>%
    calculate(stat = "diff in means", order = c("with_suit", "without_suit"))
```

## The Setup

We want to determine whether the *average* max velocity with the suit is larger than the average without the suit.

• What is wrong with the following infer code? (If you try to run it, you'll get an error) swim %>% specify(with\_suit ~ without\_suit) %>% hypothesize(null = "independence") %>% generate(reps = 1000, type = "permute") %>% calculate(stat = "diff in means", order = c("with\_suit", "without\_suit"))

| swimmer | with_suit | without_suit | difference |
|---------|-----------|--------------|------------|
| 1       | 1.6       | 1.5          | 0.08       |
| 2       | 1.5       | 1.4          | 0.10       |
| 3       | 1.4       | 1.4          | 0.07       |
| 4       | 1.4       | 1.3          | 0.08       |
| 5       | 1.2       | 1.1          | 0.10       |
| 6       | 1.8       | 1.6          | 0.11       |

• Review the data again...

## The Setup, redux

We want to determine whether the *average* difference in max velocity (with - without) is positive. Let  $\mu$  be the average difference.

$$H_0: \mu = 0$$
  $H_a: \mu > 0$ 

## The Setup, redux

We want to determine whether the *average* difference in max velocity (with - without) is positive. Let  $\mu$  be the average difference.

```
H_0: \mu = 0 \quad H_a: \mu > 0
```

```
set.seed(1234)
swim_stat <- swim %>% specify(response = difference) %>%
    calculate(stat = "mean")
swim_stat
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.0775
swim_null <- swim %>% specify(response = difference) %>%
    hypothesize(null = "point", mu = 0) %>%
    generate(reps = 1000, type = "bootstrap") %>%
    calculate(stat = "mean")
```

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")



#### Simulation-Based Null Distribution

• P-Value?

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")

to 100-0-0.000 0.025 0.050 0.075 stat

Simulation-Based Null Distribution

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")

to 100-0-0.000 0.025 0.050 0.075 stat

#### Simulation-Based Null Distribution

#### • P-Value?

• This study gives good evidence at the  $\alpha = 0.01$  significance level that the suit does increase max velocity.

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")

to 100-0-0-0.000 0.025 0.050 0.050 0.075

#### Simulation-Based Null Distribution

#### P-Value?

- This study gives good evidence at the  $\alpha = 0.01$  significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")

to 100-0-0-0.000 0.025 0.050 0.050 0.075

#### Simulation-Based Null Distribution

#### P-Value?

- This study gives good evidence at the  $\alpha = 0.01$  significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?
  - If the average max velocity is about 1.4, this is about a 5% increase in speed.

swim\_null %>% visualise()+shade\_p\_value(obs\_stat = swim\_stat, direction = "right")

#### Simulation-Based Null Distribution

#### P-Value?

- This study gives good evidence at the  $\alpha = 0.01$  significance level that the suit does increase max velocity.
- Is a difference of 0.077 max velocity of practical significance?
  - If the average max velocity is about 1.4, this is about a 5% increase in speed.
- In the 2008 Beijing Olympics, swimmers wearing the suit...
  - Were awarded 98% of all medals (including 33 of 36 gold medals).
  - Represented 23 of the total 25 world records broken.