Inference for Regression

Nate Wells

Math 141, 4/26/21

	Regression

Conditions for Inference

Confidence Intervals

Outline

In this lecture, we will...

- Review framework for Linear Regression
- Discuss inference procedures for linear models
- Review conditions for regression on linear models

Section 1

Simple Linear Regression

Simple Linear Regression		
0000		

• Previously, we used linear regression to analyze the relationship between two quantitative variables

Simple Linear Regression		
0000		

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$

Simple Linear Regression		
0000		

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

Simple Linear Regression		
0000		

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

Simple Linear Regression		
0000		

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

• We can fit a linear model to any data set we want.

Simple Linear Regression		
0000		

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

- We can fit a linear model to any data set we want.
- But if we just have a *sample* of data, any trend we detect doesn't necessarily demonstrate that the trend exists in the *population*.

Simple	Linear	Regression	
0000			

Conditions for Inference

Confidence Intervals 00000

Statistical Inference for Regression

Goal: Use statisics calculated from data to make inferences about the nature of parameters

Simple Linear Regression		
0000		

Statistical Inference for Regression

Goal: Use *statisics* calculated from data to make inferences about the nature of *parameters* For regression:

- Parameters: β_0, β_1
- Statistics: b_0, b_1

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statisics* calculated from data to make inferences about the nature of *parameters* For regression:

- **Parameters**: β_0, β_1
- Statistics: b_0, b_1

Classic tools of inference:

- Confidence Intervals to estimate values
- Hypothesis Tests to assess claims about values

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statisics* calculated from data to make inferences about the nature of *parameters* For regression:

- **Parameters**: β_0, β_1
- Statistics: b_0, b_1

Classic tools of inference:

- Confidence Intervals to estimate values
- Hypothesis Tests to assess claims about values

Our sample data represents a shadow of the true population.

Confidence Intervals 00000

Statistical Inference for Regression

Goal: Use *statisics* calculated from data to make inferences about the nature of *parameters* For regression:

- **Parameters**: β_0, β_1
- Statistics: b_0, b_1

Classic tools of inference:

- Confidence Intervals to estimate values
- Hypothesis Tests to assess claims about values

Our sample data represents a shadow of the true population.

• Like shadows, certain features may accentuated or compressed compared to the genuine article

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statisics* calculated from data to make inferences about the nature of *parameters* For regression:

- **Parameters**: β_0, β_1
- Statistics: b_0, b_1

Classic tools of inference:

- Confidence Intervals to estimate values
- Hypothesis Tests to assess claims about values

Our sample data represents a shadow of the true population.

- Like shadows, certain features may accentuated or compressed compared to the genuine article
- But we can analyze how much features could change by creating model replicas and comparing the shadows of the replicas to the replica itself

Simple Linear Regression		
0000		

"Old Reed" Theory: Thesis page counts have decreased over time due to relaxed standards.

Simple Linear Regression		
0000		

"Old Reed" Theory: Thesis page counts have decreased over time due to relaxed standards.

Simple Linear Regression		
0000		

"Old Reed" Theory: Thesis page counts have decreased over time due to relaxed standards.

But this is just a sample of data. Would a different sample produce a different regression line?

Simple Linear Regression		
0000		

"Old Reed" Theory: Thesis page counts have decreased over time due to relaxed standards.

But this is just a sample of data. Would a different sample produce a different regression line?

• Almost certainly!

Simple Linear Regression		
0000		

"Old Reed" Theory: Thesis page counts have decreased over time due to relaxed standards.

But this is just a sample of data. Would a different sample produce a different regression line?

- Almost certainly!
- We'll investigate how much it could change by

Confidence Intervals 00000

Section 2

Hypothesis Tests

Nate Wells

Linear	Regression

Conditions for Inference

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

• If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y amongst the values of X to produce a similar data set:

	Regression

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y amongst the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from amongst all recorded page counts (without replacement)

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y amongst the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from amongst all recorded page counts (without replacement)
 - Compute the slope of the regression model for this synthetic data set

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y amongst the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from amongst all recorded page counts (without replacement)
 - Compute the slope of the regression model for this synthetic data set
 - Repeat several times to assess variability in slope assuming H_0 is true

Conditions for Inference

Confidence Intervals 00000

A Few Shuffles

the s h g	ses pec ypc ene	s_samp %> cify(n_pa othesize(erate(1,	>% ages~ye (null = type =	ear) %>% = "independ = "permute"	ence"))	%>%							
##	#	A tibble	e: 6 x	3	##	#	A tibbl	e: 6 x	3	##	#	A tibble	e:6 x	3
##	#	Groups:	rep	licate [1]	##	#	Groups:	rep	licate [1]	##	#	Groups:	rep	licate [1]
##		n_pages	year	replicate	##		n_pages	year	replicate	##		n_pages	year	replicate
##		<dbl></dbl>	<dbl></dbl>	<int></int>	##		<dbl></dbl>	<dbl></dbl>	<int></int>	##		<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	103	1985	1	##	1	67	1985	1	##	1	191	1985	1
##	2	46	2007	1	##	2	150	2007	1	##	2	59	2007	1
##	3	128	2010	1	##	3	269	2010	1	##	З	59	2010	1
##	4	74	1975	1	##	4	65	1975	1	##	4	104	1975	1
##	5	88	1976	1	##	5	74	1976	1	##	5	64	1976	1
##	6	127	1998	1	##	6	61	1998	1	##	6	55	1998	1

	Hypothesis Tests		
0000	00000000	00000	00000

Scatterplots of Synthetic Data I

```
samp1 %>% ggplot( aes( x = year, y = n_pages)) +
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Reed Theses Synthetic", x = "Year", y = "Page Count")
```


Reed Theses Synthetic

Simple Linear Regression	Hypothesis Tests		
0000	00000000	00000	00000

Scatterplots of Synthetic Data II

```
samp2 %>% ggplot( aes( x = year, y = n_pages)) +
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Reed Theses Synthetic", x = "Year", y = "Page Count")
```


Reed Theses Synthetic

Simple Linear Regression	Hypothesis Tests		
0000	000000000	00000	00000

Scatterplots of Synthetic Data III

```
samp3 %>% ggplot( aes( x = year, y = n_pages)) +
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Reed Theses Synthetic", x = "Year", y = "Page Count")
```


Note: location of individual points change, but general clusters do not.

	Regression

Conditions for Inference

Confidence Intervals 00000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	0000000000		00000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

```
theses_samp %>%
  specify(n_pages-year) %>%
  hypothesize(null = "independence") %>%
  generate(1000, type = "permute") %>%
  calculate( stat = "slope")
```

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	0000000000		00000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

```
theses_samp %>%
  specify(n_pages~year) %>%
 hypothesize(null = "independence") %>%
 generate(1000, type = "permute") %>%
  calculate( stat = "slope")
## # A tibble: 6 x 2
    replicate
                   stat
##
##
        <int>
                  <dbl>
## 1
             1 - 0.444
## 2
             2 - 0.175
             3 -0.405
## 3
## 4
           4 0.0910
## 5
           5 -0.00270
## 6
             6 0.211
```

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes

Most lines are approximately horizontal. But some have positive or negative slope.

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes

Most lines are approximately horizontal. But some have positive or negative slope. The linear regression line for the original data is shown in blue.
	Regression

Confidence Intervals 00000

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.92, direction = "left")

Simulation-Based Null Distribution

Regression

Confidence Intervals

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.92, direction = "left")

Simulation-Based Null Distribution

null_slope %>% get_p_value(obs_stat = -0.92, direction = "left")

A tibble: 1 x 1
p_value
<dbl>
1 0

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	00000

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals 00000

With a P-value less than $\alpha = 0.01$, we reject H_0 in favor of H_a .

• A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference 00000	Confidence Intervals

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	00000

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	00000

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.
 - Even if page count has truly decreased on average, page count doesn't necessarily indicate quality or standards.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000	000000000●	00000	

- A slople like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count caused by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.
 - Even if page count has truly decreased on average, page count doesn't necessarily indicate quality or standards.
 - Perhaps conditions for inference were not met!

Section 3

Conditions for Inference

Nate Wells

Linear	Regression

Conditions for Inference

Confidence Intervals 00000

Conditions for Inference

Conditions for Inference

Confidence Intervals

Conditions for Inference

- Relationship between variables must be approximately linear. (Linear)
 - Check using scatterplot and/or residual plot

- Relationship between variables must be approximately linear. (Linear)
 - Check using scatterplot and/or residual plot
- Phe variability of residuals should be roughly constant across entire data set. (Homoscedastic)
 - Check using resdidual plot.

- **1** Relationship between variables must be approximately linear. (Linear)
 - Check using scatterplot and/or residual plot
- P The variability of residuals should be roughly constant across entire data set. (Homoscedastic)
 - Check using resdidual plot.
- O The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
 - Check using histogram of residuals

	Linear	Regression	
0000			

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Linear

Data is not tightly clustered around line of best fit

Simple Linear Regression		Conditions for Inference	
0000	000000000	00000	00

Checking Conditions: Linear

Data is not tightly clustered around line of best fit

• But this doesn't mean data is not linear. Just that residuals have high variance

Simple Linear Regression	

Confidence Intervals 00000

Checking Conditions: Linear

Data is not tightly clustered around line of best fit

• But this doesn't mean data is not linear. Just that residuals have high variance get_correlation(data = theses_samp, n_pages ~ year)

```
## # A tibble: 1 x 1
## cor
## <dbl>
## 1 -0.315
```

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Homoscedastic

Residuals appear to have constant varaibility between 1975 and 2020

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Homoscedastic

Residuals appear to have constant varaibility between 1975 and 2020

• However, theses prior to 1975 appear to have more spread (and almost all outliers come from this region of sparser data)

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Normal

Distribution of Residuals

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Normal

Distribution of Residuals

The distribution does appear to have moderate right skew, with a notable outlier

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Normal

Distribution of Residuals

The distribution does appear to have moderate right skew, with a notable outlier

• This is relatively concerning. We should treat the results of inference with caution.

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Normal

Distribution of Residuals

The distribution does appear to have moderate right skew, with a notable outlier

- This is relatively concerning. We should treat the results of inference with caution.
- Do we discard conclusions entirely?

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Normal

Distribution of Residuals

The distribution does appear to have moderate right skew, with a notable outlier

- This is relatively concerning. We should treat the results of inference with caution.
- Do we discard conclusions entirely?
 - No. But this does warrant further research.

Section 4

Confidence Intervals

Nate Wells

Confidence Intervals

Confidence Intervals for Linear Models

• A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?
 - It's hard to say without knowing the variability in the year and in the page count data.
 - Remember that slope tells us the average increase in the response variable per unit increase in the explanatory variable

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?
 - It's hard to say without knowing the variability in the year and in the page count data.
 - Remember that slope tells us the average increase in the response variable per unit increase in the explanatory variable
- If we want to estimate the strength of the linear relationship between the two variables, we should instead create a confidence interval for the correlation *R*.

Simple Linear Regression		Confidence Intervals
		00000

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

Conditions for Inference

Confidence Intervals

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

```
theses samp %>%
  specify(n_pages~year) %>%
  generate(1, type = "bootstrap")
## # A tibble: 6 x 3
## # Groups:
               replicate [1]
     replicate n_pages year
##
##
         <int>
                 <dbl> <dbl>
## 1
                   111 1996
             1
                    71 1940
## 2
             1
## 3
             1
                    67 2008
## 4
             1
                    97 1974
## 5
             1
                    84 1961
## 6
             1
                   173 2018
```

Conditions for Inference

Confidence Intervals

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

```
theses samp %>%
  specify(n pages~vear) %>%
  generate(1, type = "bootstrap")
     A tibble: 6 x 3
##
   # Groups:
               replicate [1]
     replicate n_pages
##
                        vear
         <int>
                  <dbl> <dbl>
##
## 1
                    111
                        1996
                     71
                        1940
## 2
## 3
                     67
                         2008
                     97
                         1974
## 4
              1
## 5
                     84
                         1961
                    173
                          2018
## 6
get_correlation(samp1, n_pages~year)
     A tibble: 1 \times 2
     replicate
##
                   cor
##
         <int> <dbl>
## 1
              1 - 0.148
```


- Dashed red line indicates regression line for original sample
- Darker points correspond to observations included in bootstrap more than once

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
theses_samp %>%
  specify(n_pages-year) %>%
  generate(1000, type = "bootstrap") %>%
  calculate(stat = "correlation")
```

Linear	Regression

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
theses_samp %>%
  specify(n_pages-year) %>%
  generate(1000, type = "bootstrap") %>%
  calculate(stat = "correlation")
```

```
## # A tibble: 6 x 2
##
    replicate stat
##
         <int> <dbl>
## 1
             1 -0.197
## 2
             2 -0.395
## 3
            3 -0.195
          4 -0.379
## 4
          5 -0.227
## 5
            6 -0.268
## 6
```
Simple Linear Regression		Conditions for Inference	Confidence Intervals
0000	000000000	00000	00000

The Bootstrap Distribution for R

correlation_ci <- boot_slope %>% get_ci(level = .95, type = "percentile")
correlation_ci

A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 -0.484 -0.143
boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)

Simple Linear Regression		Conditions for Inference	Confidence Intervals
0000	000000000	00000	00000

The Bootstrap Distribution for R

correlation_ci <- boot_slope %>% get_ci(level = .95, type = "percentile")
correlation_ci

A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 -0.484 -0.143
boot slope %>% visualize()+shade ci(endpoints =correlation ci)

• The original sample had correlation R = -0.315

• It is possible the true relationship between page count and year has between very weak (-0.13) and moderate (-0.48) negative correlation.