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Multiple Linear Regression

Outline

In this lecture, we will. . .
• Discuss framework for multiple linear regression and compare to simple linear
regression

• Use the moderndive packages to create multiple regression models.
• Quantify variance in a linear model using the correlation coefficient
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Section 1

Multiple Linear Regression
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Multiple Linear Regression

Many Simple Linear Regression Models

We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

• Response: Reed thesis page count
• Potential Explanatory: year, division, number of check-outs
• Response: Home prices
• Potential Explanatory: square feet, number of bedrooms, number of bathrooms
• Response: Household income
• Potential Explanatory: household size, years of education, state of residency

In each case, we could create simple linear regression models for each explanatory variable.
• But the results may be misleading. Several explanatory variables may be highly
correlated.

Could we get better predictive power by including all explanatory variables in the same
model?
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Multiple Linear Regression

Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function of one explanatory variable X :

Ŷ = β0 + β1 · X

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1,X2, . . . ,Xk :

Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βk · Xk

• In the MLR model, we allow the explanatory variables to either be quantitative or
binary categorical (i.e taking values 0 or 1 corresponding to failure or success)

• While we lose a nice 2D graphical representation (although higher dimensional
graphics are possible), statistical software allows us to estimate coefficients of the
model.
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Ŷ = β0 + β1 · X

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1,X2, . . . ,Xk :
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Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βk · Xk

• In the MLR model, we allow the explanatory variables to either be quantitative or
binary categorical (i.e taking values 0 or 1 corresponding to failure or success)

• While we lose a nice 2D graphical representation (although higher dimensional
graphics are possible), statistical software allows us to estimate coefficients of the
model.

Nate Wells Multiple Linear Regression Math 141, 4/28/21 5 / 16



Multiple Linear Regression

Finding Parameters

To create an SLR model, we found the equation of a line that minimizes the sum of
squared residuals, where

Residual = Observed − Predicted ei = ŷi − yi

To create an MLR model, we do the exact same thing!
• The only difference is that instead of the equation describing a line, the equation
describes a plane in multidimensional space.

• If we have 2 explanatory variables, the equation describes a plane in 3D space.

We even use the exact same R code to fit the linear model:
mod<-lm(Y ~ X1 + X2 + ... + Xk, data = my_data)
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Multiple Linear Regression

Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider Balance as a function of Limit and Income
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R = 0.46 ˆBalance = 246.51+6.048·Income

Both variables have some explanatory power for Balance
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Multiple Linear Regression

The Regression Plane

How do Limit and Income together explain Balance?
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Multiple Linear Regression

Multiple Regression for Debt

Let’s find the MLR model
mod<-lm(Balance ~ Limit + Income, data = Credit)

And investigate the regression table
get_regression_table(mod)

## # A tibble: 3 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept -385. 19.5 -19.8 0 -423. -347.
## 2 Limit 0.264 0.006 45.0 0 0.253 0.276
## 3 Income -7.66 0.385 -19.9 0 -8.42 -6.91

Which gives us the regression equation:

ˆBalance = −385.179 + 0.264 · Limit − 0.7663 · Income

• For fixed value of Income, increasing Credit Limit by $1 increases Balance by an
average of $0.264.

• While for fixed value of Limit, increasing Income by $1000 decreases Balance by an
average of $7.66.
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Multiple Linear Regression

Comparing MLR and SLR

Wait. . .

• The SLR for Balance and Income was

ˆBalance = 246.51 + 6.048 · Income
• That is, increasing Income by $1000 INCREASED Balance by $6.05.
• But the MLR is

ˆBalance = −385.179 + 0.264 · Limit − 0.7663 · Income

• Not only has MLR given us a new rate of change, but it’s completely switched the
direction!

• How is this possible?
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Multiple Linear Regression

Income and Credit Limit

Let’s consider the relationship between income and credit limit

Y = 2390  + 52 X

R = 0.8
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Income and Credit Limit

In a vacuum, as income increases, so too does credit limit.
• So in the SLR model, when we assess the change in Debt due to increase in Income,
we are implicitly also increasing Credit Limit

• We could say Credit Limit is a confounding variable in the SLR model.
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Multiple Linear Regression

The Regression Plane Revisited

In the MLR model, we may freely change both Income and Credit Limit

• This corresponds to the fact that there is a unique Balance point on the regression
plane for each pair of Income / Credit Limit values.
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Multiple Linear Regression

Debt vs. Income Revisited

We can lump Credit Limits into 4 brackets (low, med-low, med-high, high) to create a
categorical variable and analyze the SLR for Balance and Income for each level of Credit
Limit

Credit_bracket<-Credit %>%
mutate(credit_bracket = case_when(

Limit < quantile(Limit, .25) ~ "low",
Limit > quantile(Limit, .25) & Limit < median(Limit) ~ "med-low",
Limit > median(Limit) & Limit < quantile(Limit, .75) ~ "med-high",
Limit > quantile(Limit, .75) ~ "high")) %>%

mutate(credit_bracket = fct_relevel(
credit_bracket, "high", "med-high", "med-low", "low"))

## Income Limit Balance credit_bracket
## 1 15 3606 333 med-low
## 2 106 6645 903 high
## 3 105 7075 580 high
## 4 149 9504 964 high
## 5 56 4897 331 med-high
## 6 80 8047 1151 high
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Multiple Linear Regression

Debt vs. Income Revisited
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• Note that within each credit bracket, increasing income corresponds to either
decreasing or relatively flat change in Balance

• This is an example of Simpson’s Paradox: a trend present in the aggregate data can
reverse itself when data is considered by group.

Nate Wells Multiple Linear Regression Math 141, 4/28/21 14 / 16



Multiple Linear Regression

Debt vs. Income Revisited

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

credit_bracket

high

med−high

med−low

low

Balance and Income

• Note that within each credit bracket, increasing income corresponds to either
decreasing or relatively flat change in Balance

• This is an example of Simpson’s Paradox: a trend present in the aggregate data can
reverse itself when data is considered by group.

Nate Wells Multiple Linear Regression Math 141, 4/28/21 14 / 16



Multiple Linear Regression

Debt vs. Income Revisited

0

500

1000

1500

2000

50 100 150
Income (in $1000)

D
eb

t (
in

 $
)

credit_bracket

high

med−high

med−low

low

Balance and Income

• Note that within each credit bracket, increasing income corresponds to either
decreasing or relatively flat change in Balance

• This is an example of Simpson’s Paradox: a trend present in the aggregate data can
reverse itself when data is considered by group.

Nate Wells Multiple Linear Regression Math 141, 4/28/21 14 / 16



Multiple Linear Regression

How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

• The value R2 has utility too! It represents the percentage of variability in values of
the response variable just due to variability in explanatory variable.

• If R ≈ ±1, then R2 ≈ 1: nearly all the variability in response is due to variability in the
explanatory variable.
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Multiple Linear Regression

Model Strength for MLR

We can also compute R2 for MLR. In particular,

R2 = 1 −
variability in residuals
variability in outcomes

= 1 −
Var(ei )
Var(yi )

• Usually, we use software to compute
mod_credit<-lm(Balance ~ Income + Limit , data = Credit)
get_regression_summaries(mod_credit)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.871 0.87 27177. 165. 165. 1342. 0 2 400

• But it turns out this formula gives a biased estimate of the variability in the
population explained by the model.

• Instead, we use the adjusted R:

R2 = 1 −
Var(ei )
Var(yi )

·
n − 1

n − k − 1

• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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