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Outline

In this lecture, we will. . .
• Quantify variance in a linear model using the correlation coefficient
• Discuss metrics for selecting the “best” model
• Describe the forward-selection and backward-elimination procedures for model
selection
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Multiple Regression Model

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1,X2, . . . ,Xk :

Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βk · Xk

We use the following R code to fit and summarize a linear model:
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)

## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8
## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

• Which gives us our linear regression formula:

Ŷ = 3.26 − 1.24 · X1 + 2.68 · X2 + 3.2 · X3
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How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

• The value R2 has utility too! It represents the percentage of variability in values of
the response variable just due to variability in explanatory variable.

• If R ≈ ±1, then R2 ≈ 1: nearly all the variability in response is due to variability in the
explanatory variable.

R = 0.97

R^2 = 0.94
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Model Strength for MLR

We can also compute R2 for MLR. In particular,

R2 = 1 −
variability in residuals
variability in outcomes

= 1 −
Var(ei )
Var(yi )

• Usually, we use software to compute
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_summaries(mod)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.798 0.769 17.0 4.13 4.50 27.6 0 3 25

• But it turns out this formula gives a biased estimate of the variability in the
population explained by the model.

• Instead, we use the adjusted R:

R2 = 1 −
Var(ei )
Var(yi )

·
n − 1

n − k − 1

• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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Section 2

Model Building
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score X1 and year in school X2.

• Note that both Y and X1 are quantitative, but X2 is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).

• Let ISophomore, IJunior, ISenior be the indicator functions for the respective levels.
• That is, ISophomore(x) = 1 if the observation x is a first year, and 0 otherwise.

• An MLR model could be

Ŷ = 34.2 + 0.6 · X1 + 0.9 · ISophomore − 3.6 · IJunior − 0.6 · ISenior

• To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm
score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a
junior, or subtract 0.6 point if you are a senior.

• Why no indicator for first-years?
• If you aren’t a sophomore, junior, or senior, you must be a first-year.
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Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

## Exam1 Exam2 Final Year
## 1 73 82 83 First
## 2 87 90 83 Soph
## 3 89 89 86 Sr
## 4 58 65 69 First
## 5 80 77 88 Soph
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Final vs 1st Midterm, by Year
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Model Fitting

Using the lm function, we create a linear model for Final score as a function of 1st
Midterm score and Year:

mod_mt_year<-lm(Final ~ Exam1 + Year, data = Grades)

And we examine the model using the get_regression_table function

get_regression_table(mod_mt_year)

## # A tibble: 5 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 34.2 7.25 4.72 0 19.6 48.8
## 2 Exam1 0.636 0.09 7.06 0 0.455 0.817
## 3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
## 4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
## 5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

From the table, our regression equation is

Ŷ = 34.2 + 0.6 · X1 + 0.9 · ISophomore − 3.6 · IJunior − 0.6 · ISenior
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Graph of Parallel Slopes Model

ggplot(Grades, aes( x = Exam1, y = Final, color = Year))+
geom_point()+
labs(title = "Parallel Slopes")+
geom_parallel_slopes(se = F) ### Note the different geom
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Section 3
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

## # A tibble: 5 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 34.2 7.25 4.72 0 19.6 48.8
## 2 Exam1 0.636 0.09 7.06 0 0.455 0.817
## 3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
## 4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
## 5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

• In most cases, changing year in school changes exam score by less than 1 point.
• And for seniors, sample size should be a concern (n = 3)
• Using a t-test against the null hypothesis that the true coefficient is 0, we see that
none of sophomore, junior or senior dummy variables are significant at the α = 0.05
level

• It is plausible that there truly is no difference in scores between years, and any observed
difference is just due to random chance.
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Model Selection, cont’d

• On the other hand, we do have data on year in school, so why not use it?

• We also have data on 2nd exam, so why not include it as well?
• A regression model which includes all measured variables is called the full model

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

• Why don’t we always use the full model?

Nate Wells Multiple Linear Regression Math 141, 4/30/21 14 / 25



Multiple Linear Regression Model Building Model Selection Selection Strategies

Model Selection, cont’d

• On the other hand, we do have data on year in school, so why not use it?
• We also have data on 2nd exam, so why not include it as well?

• A regression model which includes all measured variables is called the full model

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

• Why don’t we always use the full model?

Nate Wells Multiple Linear Regression Math 141, 4/30/21 14 / 25



Multiple Linear Regression Model Building Model Selection Selection Strategies

Model Selection, cont’d

• On the other hand, we do have data on year in school, so why not use it?
• We also have data on 2nd exam, so why not include it as well?
• A regression model which includes all measured variables is called the full model

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

• Why don’t we always use the full model?

Nate Wells Multiple Linear Regression Math 141, 4/30/21 14 / 25



Multiple Linear Regression Model Building Model Selection Selection Strategies

Model Selection, cont’d

• On the other hand, we do have data on year in school, so why not use it?
• We also have data on 2nd exam, so why not include it as well?
• A regression model which includes all measured variables is called the full model

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

• Why don’t we always use the full model?

Nate Wells Multiple Linear Regression Math 141, 4/30/21 14 / 25



Multiple Linear Regression Model Building Model Selection Selection Strategies

Model Selection, cont’d

• On the other hand, we do have data on year in school, so why not use it?
• We also have data on 2nd exam, so why not include it as well?
• A regression model which includes all measured variables is called the full model

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

• Why don’t we always use the full model?

Nate Wells Multiple Linear Regression Math 141, 4/30/21 14 / 25



Multiple Linear Regression Model Building Model Selection Selection Strategies

Occam’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity

— William of Ockham, c. 1300

• All else held equal, a simpler model makes better predictions.
• Adding additional variables to a model increases the likelihood that the model fits to
particular features of the sample, rather than general trends in the population.

• On the other hand, failing to include important variables may lead to missing relevant
relations

• In statistical/machine learning, this is oft referred to as the Bias-Variance trade-off
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Selection Criteria

There are several numbers we can use to assess the strength of a model:

1 Individual p-values
2 R2

3 Residual standard errors
4 Overall model p-value
5 F-statistic from ANOVA
6 Adjusted R2

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the
opposite. Some are relatively balanced.

• Choices are usually discipline specific, and the particular trade-offs are discussed in
advanced statistics and statistical learning courses (like Math 243!)

We’ll focus on individual P-values and adjusted R2
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Section 4

Selection Strategies
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Backward-Elimination

• One of the most common model selection techniques is backward-elimination:

• Begin with the full model (with all predictors)
• Eliminate the predictor with greatest p-value larger than desired significance level
• Refit the model with remaining predictors and repeat until all are significant
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Backward-Elimination on Exam Scores I

mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5
## 2 Exam1 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33
get_regression_summaries(mod_full)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

• The p-values for each year dummy variable are larger than 0.05, so we eliminate
year from our model.

• Note: Including categorical variables is “all-or-nothing”; either we include all levels of the
variable or we include none. If at least 1 level is significant, we’ll leave all in the model.
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Backward-Elimination on Exam Scores II

Let’s fit with just the 2 exam scores:

mod_no_year<-lm(Final ~ Exam1 + Exam2 , data = Grades)
get_regression_table(mod_no_year)

## # A tibble: 3 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 30.9 8.00 3.86 0 14.8 47.0
## 2 Exam1 0.447 0.161 2.78 0.008 0.124 0.77
## 3 Exam2 0.221 0.176 1.26 0.215 -0.133 0.575

• Note that the estimates changed in the reduced model.
• The p-values for the Exam2 variable is larger than 0.05, so we eliminate Exam2
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Multiple Linear Regression Model Building Model Selection Selection Strategies

Backward-Elimination on Exam Scores II

• But before we create a new model, let’s consider R2:

get_regression_summaries(mod_full)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50
get_regression_summaries(mod_no_year)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.525 0.505 38.2 6.18 6.38 26.0 0 2 50

• Note that while R2 decreased from the full model to the reduced model, adjusted R2

actually increased!
• Recall that adjusted R2 penalizes R2 by the number of variables in the model.
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Multiple Linear Regression Model Building Model Selection Selection Strategies

Backward-Elimination on Exam Scores III

Let’s fit the model with just Exam1

mod_exam1<-lm(Final ~ Exam1 , data = Grades)
get_regression_table(mod_exam1)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9
## 2 Exam1 0.617 0.087 7.06 0 0.441 0.792
get_regression_summaries(mod_exam1)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 39.5 6.29 6.42 49.8 0 1 50

• All remaining variables are significant, so this is the model we use.
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Multiple Linear Regression Model Building Model Selection Selection Strategies

Backward-Elimination on Exam Scores IV

Out of curiosity, what would the model with Score ~ Exam2 look like?
mod_exam2<-lm(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 32.9 8.51 3.86 0 15.8 50.0
## 2 Exam2 0.633 0.102 6.23 0 0.429 0.838

get_regression_table(mod_exam1)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9
## 2 Exam1 0.617 0.087 7.06 0 0.441 0.792
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Multiple Linear Regression Model Building Model Selection Selection Strategies

Backward-Elimination on Exam Scores V

• Why eliminate Exam 2 if it is a significant predictor of Final score?

• While each exam, on its own, is a good predictor of the final score, but if exam1 is
already in the model, exam2 becomes unnecessary and redundant.

get_correlation(data = Grades, Exam1 ~ Exam2)

## cor
## 1 0.84

• So which model should we go with?
get_regression_summaries(mod_exam1)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 39.5 6.29 6.42 49.8 0 1 50
get_regression_summaries(mod_exam2)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.447 0.435 44.5 6.67 6.81 38.8 0 1 50
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Multiple Linear Regression Model Building Model Selection Selection Strategies

Forward-selection

• The second most common model selection techniques is forward-selection:

• Begin with a model with no predictors
• For each possible predictor, create a model with that predictor added.
• Pick the predictor model where the added predictor had the smallest significant p-value.
• Repeat the previous 2 steps until no added predictors have significant p-values.

• There is no guarantee that forward-selection and backward-elimination will reach the
same model.

• Usually, we just use one selection method. Since backward-elimination requires fewer
steps, it is often used.
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