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Outline

In this lecture, we will. . .
® Quantify variance in a linear model using the correlation coefficient
® Discuss metrics for selecting the “best” model

® Describe the forward-selection and backward-elimination procedures for model
selection
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Multiple Regression Model

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1, X, ..., Xk:

\A/Iﬁo-i-ﬂl'X1+52'X2+"'+5k'xk
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Multiple Regression Model

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1, X, ..., Xk:

\A/Zﬁo-i-ﬂl'X1+52'X2+"'+5k'xk

We use the following R code to fit and summarize a linear model:

mod<-1Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table (mod)

## # A tibble: 4 x 7

##
##
##
##
##
##

> wWN e

term estimate std_error statistic p_value lower_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
intercept 3.26 7.94 0.41 0.686 -13.3
X1 -1.24 0.313 -3.95 0.001 -1.89
X2 2.68 1.94 1.38 0.182 -1.36
X3 3.20 0.397 8.06 0 2.37
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<dbl>
19.8
-0.584
6.72
4.02




Multiple Linear Regression
[e] le]e}

Multiple Regression Model

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination of k explanatory variables X1, X, ..., Xk:

\A/Zﬁo-i-ﬂl'X1+52'X2+"'+5k'xk

We use the following R code to fit and summarize a linear model:

mod<-1Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table (mod)

## # A tibble: 4 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
#i#t <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8

## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

® Which gives us our linear regression formula:

Y =326—1.24-X; +2.68-Xp+3.2- X3
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How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

Nate Wells

Multiple Linear Regression



Multiple Linear Regression
[e]e] e}

How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

® The value R? has utility too! It represents the percentage of variability in values of
the response variable just due to variability in explanatory variable.
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How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

® The value R? has utility too! It represents the percentage of variability in values of
the response variable just due to variability in explanatory variable.

® |f R~ 41, then R? = 1: nearly all the variability in response is due to variability in the
explanatory variable.
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How Strong is a Linear Model?

For SLR, we used the correlation coefficient R to assess model strength.

® The value R? has utility too! It represents the percentage of variability in values of
the response variable just due to variability in explanatory variable.

® If R~ %1, then R? = 1: nearly all the variability in response is due to variability in the
explanatory variable.

3- R=0.97

R"2=0.94 .
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Model Strength for MLR

We can also compute R? for MLR. In particular,

R _1_ variability in residuals _ Var(e;)

variability in outcomes Var(y;)
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Model Strength for MLR

We can also compute R? for MLR. In particular,

R _1_ variability in residuals _ Var(e;)

variability in outcomes Var(y;)

® Usually, we use software to compute
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Model Strength for MLR

We can also compute R? for MLR. In particular,

R _1_ variability in residuals Var(e;)

variability in outcomes Var(y;)

® Usually, we use software to compute

mod<-Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_summaries (mod)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.798 0.769 17.0 4.13 4.50 27.6 0 3 25
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Model Strength for MLR

We can also compute R? for MLR. In particular,

variability in residuals Var(e;)

RR=1- =
variability in outcomes Var(y;)

® Usually, we use software to compute

mod<-Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_summaries (mod)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.798 0.769 17.0 4.13 4.50 27.6 0 3 25

® But it turns out this formula gives a biased estimate of the variability in the

population explained by the model.
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Model Strength for MLR

We can also compute R? for MLR. In particular,

variability in residuals Var(e;)

RR=1- =
variability in outcomes Var(y;)

® Usually, we use software to compute

mod<-Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_summaries (mod)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.798 0.769 17.0 4.13 4.50 27.6 0 3 25

® But it turns out this formula gives a biased estimate of the variability in the
population explained by the model.

® |nstead, we use the adjusted R:

Nate Wells Multiple Linear Regression Math 141,



Multiple Linear Regression
[e]e]e] ]

Model Strength for MLR

We can also compute R? for MLR. In particular,

R _1_ variability in residuals Var(e;)

variability in outcomes Var(y;)

® Usually, we use software to compute

mod<-Im(Y ~ X1 + X2 + X3, data = my_data)
get_regression_summaries (mod)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.798 0.769 17.0 4.13 4.50 27.6 0 3 25

® But it turns out this formula gives a biased estimate of the variability in the
population explained by the model.

® |nstead, we use the adjusted R:

Roq_ Yarle) _n-1
Var(y;) n—k—1

® This adjusted R? is usually a bit smaller than R?, and the difference decreases as n
gets large.
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).

® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).

® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.

® That is, Isophomore(X) = 1 if the observation x is a first year, and 0 otherwise.
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).
® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.
® That is, Isophomore(X) = 1 if the observation x is a first year, and 0 otherwise.

® An MLR model could be

~

Y =342 + 0.6- Xl + 0.9- ISophomore —3.6- IJunior —0.6- ISenior
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).
® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.
® That is, Isophomore(X) = 1 if the observation x is a first year, and 0 otherwise.

® An MLR model could be

~

Y =342 + 0.6- Xl + 0.9- ISophomore —3.6- IJunior —0.6- ISenior

® To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm
score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a
junior, or subtract 0.6 point if you are a senior.
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).

® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.

® That is, Isophomore(X) = 1 if the observation x is a first year, and 0 otherwise.

® An MLR model could be

~

Y =342 + 0.6- Xl + 0.9- ISophomore —3.6- IJunior —0.6- ISenior

® To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm
score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a
junior, or subtract 0.6 point if you are a senior.

® Why no indicator for first-years?
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Modeling Exam Grades

Suppose we want to fit a model that predicts final exam score Y as a function of 1st
midterm score Xi and year in school X>.

® Note that both Y and X; are quantitative, but X; is categorical with 4 levels
(First-year, Sophomore, Junior, Senior).

® Let Isophomore; ITunior, Isenior be the indicator functions for the respective levels.
® That is, Isophomore(X) = 1 if the observation x is a first year, and 0 otherwise.

® An MLR model could be

~

Y =342 + 0.6- Xl + 0.9- ISophomore —3.6- IJunior —0.6- ISenior

® To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm
score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a
junior, or subtract 0.6 point if you are a senior.

® Why no indicator for first-years?

® |f you aren't a sophomore, junior, or senior, you must be a first-year.
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Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students
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Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

## Examl Exam2 Final Year
## 73 82 83 First
## 87 90 83 Soph
## 86 Sr
## 58 65 69 First
## 80 7 88 Soph

D wWwN =
oo}
©
foe]
©
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Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

## Examl Exam2 Final Year

## 73 82 83 First
## 87 90 83 Soph
## 86 Sr

##
##

58 65 69 First
80 7 88 Soph

g wWwN =
oo}
©
foe]
©

Final vs 1st Midterm, by Year

100~

°
L ° .
°® ° °
90~
[} Year
o* L] $
First
© ¢
£ ° ® Soph
iL 80- 5 3
° ® U
Sr
70-
°
60- .
50 60 70 80 90 100
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Model Fitting

Using the 1m function, we create a linear model for Final score as a function of 1st
Midterm score and Year:

mod_mt_year<-lm(Final ~ Examl + Year, data = Grades)

Nate Wells Multiple Linear Regression



Model Building
[e]e]e] o]

Model Fitting

Using the 1m function, we create a linear model for Final score as a function of 1st
Midterm score and Year:

mod_mt_year<-lm(Final ~ Examl + Year, data = Grades)

And we examine the model using the get_regression_table function

get_regression_table(mod_mt_year)

## # A tibble: 5 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 34.2 7.25 4.72 0 19.6 48.8

## 2 Examl 0.636 0.09 7.06 0 0.455 0.817
## 3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
## 4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
## 5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36
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Model Fitting

Using the 1m function, we create a linear model for Final score as a function of 1st
Midterm score and Year:

mod_mt_year<-lm(Final ~ Examl + Year, data = Grades)
And we examine the model using the get_regression_table function
get_regression_table(mod_mt_year)

## # A tibble: 5 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 34.2 7.25 4.72 0 19.6 48.8

## 2 Examl 0.636 0.09 7.06 0 0.455 0.817
## 3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
## 4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
## 5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

From the table, our regression equation is

\A/ =342+06- Xl +0.9- ISophomorc —-3.6- IJunior —-0.6- IScnior
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Graph of Parallel Slopes Model

ggplot (Grades, aes( x = Examl, y = Final, color = Year))+
geom_point )+

labs(title = "Parallel Slopes")+
geom_parallel_slopes(se = F) ### Note the different geom

Parallel Slopes

100-
90~ Year
First
K
£ ~*= Soph
iL 80-
- Jr
Sr
70-
.
60~ .
50 60 70 80 90 100
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Section 3

Model Selection
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

## # A tibble: 5 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 34.2 7.25 4.72 0 19.6 48.8

## 2 Examl 0.636 0.09 7.06 0 0.455 0.817
## 3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
## 4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
## 5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

## # A tibble: 5 x 7

##
##
##
##
##
##
##

1
2
3
4
5
L]

term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
intercept  34.2 7.25 4.72 0 19.6 48.8
Examl 0.636 0.09 7.06 0 0.455 0.817
YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

In most cases, changing year in school changes exam score by less than 1 point.
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

##
##
##
##
##
##
##
##

# A tibble: 5 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
1 intercept 34.2 7.25 4.72 0 19.6 48.8
2 Examl 0.636 0.09 7.06 0 0.455 0.817
3 YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
4 YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
5 YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36
® |n most cases, changing year in school changes exam score by less than 1 point.

® And for seniors, sample size should be a concern (n = 3)
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

## #
##
##
## 1
## 2
## 3
## 4
## 5
L]

A tibble: 5 x 7

term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
intercept  34.2 7.25 4.72 0 19.6 48.8
Examl 0.636 0.09 7.06 0 0.455 0.817
YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

In most cases, changing year in school changes exam score by less than 1 point.
And for seniors, sample size should be a concern (n = 3)

Using a t-test against the null hypothesis that the true coefficient is 0, we see that
none of sophomore, junior or senior dummy variables are significant at the & = 0.05
level
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Model Selection

Does knowing a students year in school really add significant predictive power to the
model?

get_regression_table(mod_mt_year)

## #
##
##
## 1
## 2
## 3
## 4
## 5
L]

A tibble: 5 x 7

term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
intercept  34.2 7.25 4.72 0 19.6 48.8
Examl 0.636 0.09 7.06 0 0.455 0.817
YearSoph 0.929 2.12 0.438 0.664 -3.35 5.20
YearJr -3.58 2.82 -1.27 0.212 -9.26 2.11
YearSr -0.598 3.95 -0.151 0.88 -8.56 7.36

In most cases, changing year in school changes exam score by less than 1 point.
And for seniors, sample size should be a concern (n = 3)

Using a t-test against the null hypothesis that the true coefficient is 0, we see that
none of sophomore, junior or senior dummy variables are significant at the & = 0.05
level

® |t is plausible that there truly is no difference in scores between years, and any observed
difference is just due to random chance.
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Model Selection, cont’d

® On the other hand, we do have data on year in school, so why not use it?
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Model Selection, cont’d

® On the other hand, we do have data on year in school, so why not use it?

® \We also have data on 2nd exam, so why not include it as well?
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Model Selection, cont’d

® On the other hand, we do have data on year in school, so why not use it?
® \We also have data on 2nd exam, so why not include it as well?

® A regression model which includes all measured variables is called the full model
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Model Selection, cont’d

® On the other hand, we do have data on year in school, so why not use it?
® \We also have data on 2nd exam, so why not include it as well?

® A regression model which includes all measured variables is called the full model

mod_full<-1m(Final ~ Examl + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5

## 2 Examl 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33
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Model Selection, cont’d

® On the other hand, we do have data on year in school, so why not use it?
® \We also have data on 2nd exam, so why not include it as well?

® A regression model which includes all measured variables is called the full model

mod_full<-1m(Final ~ Examl + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5

## 2 Examl 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

® Why don’t we always use the full model?
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Occam'’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity

— William of Ockham, c. 1300
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Occam'’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity

— William of Ockham, c. 1300

® All else held equal, a simpler model makes better predictions.
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Occam'’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity
— William of Ockham, c. 1300

® All else held equal, a simpler model makes better predictions.

® Adding additional variables to a model increases the likelihood that the model fits to
particular features of the sample, rather than general trends in the population.

Math 141, 4/30/21 15 /25
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Occam'’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity

— William of Ockham, c. 1300

® All else held equal, a simpler model makes better predictions.

® Adding additional variables to a model increases the likelihood that the model fits to
particular features of the sample, rather than general trends in the population.

® On the other hand, failing to include important variables may lead to missing relevant
relations
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Occam'’s Razor

“Numquam ponenda est pluralitas sine necessitate.”

Plurality must never be posited without necessity

— William of Ockham, c. 1300
® All else held equal, a simpler model makes better predictions.

® Adding additional variables to a model increases the likelihood that the model fits to
particular features of the sample, rather than general trends in the population.

® On the other hand, failing to include important variables may lead to missing relevant
relations

® |n statistical/machine learning, this is oft referred to as the Bias-Variance trade-off
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Selection Criteria

There are several numbers we can use to assess the strength of a model:

® Individual p-values

e R

©® Residual standard errors
@ Overall model p-value
® F-statistic from ANOVA
@ Adjusted R?
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Selection Criteria

There are several numbers we can use to assess the strength of a model:

® Individual p-values

e R

©® Residual standard errors
@ Overall model p-value
® F-statistic from ANOVA
@ Adjusted R?

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the
opposite. Some are relatively balanced.
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Selection Criteria

There are several numbers we can use to assess the strength of a model:

® Individual p-values

e R

©® Residual standard errors
@ Overall model p-value
@ F-statistic from ANOVA
@ Adjusted R?

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the
opposite. Some are relatively balanced.

® Choices are usually discipline specific, and the particular trade-offs are discussed in
advanced statistics and statistical learning courses (like Math 243!)
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Selection Criteria

There are several numbers we can use to assess the strength of a model:

® Individual p-values

e R

©® Residual standard errors
@ Overall model p-value
@ F-statistic from ANOVA
@ Adjusted R?

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the
opposite. Some are relatively balanced.

® Choices are usually discipline specific, and the particular trade-offs are discussed in
advanced statistics and statistical learning courses (like Math 243!)

We'll focus on individual P-values and adjusted R?
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Section 4

Selection Strategies
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Backward-Elimination

® One of the most common model selection techniques is backward-elimination:
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Backward-Elimination

® One of the most common model selection techniques is backward-elimination:

® Begin with the full model (with all predictors)
® Eliminate the predictor with greatest p-value larger than desired significance level
® Refit the model with remaining predictors and repeat until all are significant
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Backward-Elimination on Exam Scores |

mod_full<-1m(Final ~ Examl + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5

## 2 Examl 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50
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Backward-Elimination on Exam Scores |

mod_full<-1m(Final ~ Examl + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5

## 2 Examl 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

® The p-values for each year dummy variable are larger than 0.05, so we eliminate
year from our model.
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Backward-Elimination on Exam Scores |

mod_full<-1m(Final ~ Examl + Exam2 + Year, data = Grades)
get_regression_table(mod_full)

## # A tibble: 6 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 31.0 8.19 3.78 0 14.5 47.5

## 2 Examl 0.511 0.173 2.96 0.005 0.163 0.858
## 3 Exam2 0.162 0.19 0.853 0.398 -0.221 0.546
## 4 YearSoph 0.421 2.21 0.19 0.85 -4.04 4.88
## 5 YearJr -3.24 2.86 -1.14 0.262 -9.00 2.52
## 6 YearSr -0.654 3.96 -0.165 0.87 -8.64 7.33

get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

® The p-values for each year dummy variable are larger than 0.05, so we eliminate
year from our model.

® Note: Including categorical variables is “all-or-nothing”; either we include all levels of the
variable or we include none. If at least 1 level is significant, we'll leave all in the model.
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Backward-Elimination on Exam Scores I

Let's fit with just the 2 exam scores:
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Let's fit with just the 2 exam scores:

mod_no_year<-1lm(Final ~ Examl + Exam2 , data = Grades)
get_regression_table(mod_no_year)

## # A tibble: 3 x 7

## term estimate std_error statistic p_value lower_ci upper_ci

##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 intercept 30.9 8.00 3.86 0 14.8 47.0

## 2 Examl 0.447 0.161 2.78 0.008 0.124 0.77

## 3 Exam2 0.221 0.176 1.26 0.215 -0.133 0.575
[ ]

Note that the estimates changed in the reduced model.
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Backward-Elimination on Exam Scores I

Let's fit with just the 2 exam scores:

mod_no_year<-1lm(Final ~ Examl + Exam2 , data = Grades)
get_regression_table(mod_no_year)

## # A tibble: 3 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 30.9 8.00 3.86 0 14.8 47.0

## 2 Examl 0.447 0.161 2.78 0.008 0.124 0.77
## 3 Exam2 0.221 0.176 1.26 0.215 -0.133 0.575

® Note that the estimates changed in the reduced model.

® The p-values for the Exam2 variable is larger than 0.05, so we eliminate Exam2
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Backward-Elimination on Exam Scores I

® But before we create a new model, let's consider R?:
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Backward-Elimination on Exam Scores I

® But before we create a new model, let's consider R?:
get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

get_regression_summaries(mod_no_year)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.525 0.505 38.2 6.18 6.38 26.0 0 2 50
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Backward-Elimination on Exam Scores I

® But before we create a new model, let's consider R?:
get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

get_regression_summaries(mod_no_year)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.525 0.505 38.2 6.18 6.38 26.0 0 2 50

® Note that while R? decreased from the full model to the reduced model, adjusted R?
actually increased!
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Backward-Elimination on Exam Scores I

® But before we create a new model, let's consider R?:
get_regression_summaries(mod_full)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.541 0.489 36.9 6.08 6.48 10.4 0 5 50

get_regression_summaries(mod_no_year)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 0.525 0.505 38.2 6.18 6.38 26.0 0 2 50

® Note that while R? decreased from the full model to the reduced model, adjusted R?
actually increased!

® Recall that adjusted R? penalizes R? by the number of variables in the model.
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Backward-Elimination on Exam Scores ||

Let's fit the model with just Examl
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Backward-Elimination on Exam Scores ||

Let's fit the model with just Examl

mod_examl<-1m(Final ~ Examl , data = Grades)
get_regression_table(mod_exami)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9

## 2 Examl 0.617 0.087 7.06 0 0.441 0.792

get_regression_summaries(mod_examl)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 39.5 6.29 6.42 49.8 0 1 50
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Backward-Elimination on Exam Scores ||

Let's fit the model with just Examl

mod_examl<-1m(Final ~ Examl , data = Grades)
get_regression_table(mod_exami)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9

## 2 Examl 0.617 0.087 7.06 0 0.441 0.792

get_regression_summaries(mod_examl)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 39.5 6.29 6.42 49.8 0 1 50

® All remaining variables are significant, so this is the model we use.
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Backward-Elimination on Exam Scores |V

Out of curiosity, what would the model with Score ~ Exam?2 look like?

mod_exam2<-1m(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 32.9 8.51 3.86 0 15.8 50.0

## 2 Exam2 0.633 0.102 6.23 0 0.429 0.838
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Backward-Elimination on Exam Scores |V

Out of curiosity, what would the model with Score ~ Exam?2 look like?

mod_exam2<-1m(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 32.9 8.51 3.86 0 15.8 50.0

## 2 Exam2 0.633 0.102 6.23 0 0.429 0.838

get_regression_table(mod_examl)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9

## 2 Examl 0.617 0.087 7.06 0 0.441 0.792
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Backward-Elimination on Exam Scores |V

Out of curiosity, what would the model with Score ~ Exam?2 look like?

mod_exam2<-1m(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 32.9 8.51 3.86 0 15.8 50.0

## 2 Exam2 0.633 0.102 6.23 0 0.429 0.838

get_regression_table(mod_examl)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 35.5 7.14 4.97 0 21.2 49.9

## 2 Examl 0.617 0.087 7.06 0 0.441 0.792
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Backward-Elimination on Exam Scores V

® Why eliminate Exam 2 if it is a significant predictor of Final score?
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Backward-Elimination on Exam Scores V

® Why eliminate Exam 2 if it is a significant predictor of Final score?

® While each exam, on its own, is a good predictor of the final score, but if examl is
already in the model, exam2 becomes unnecessary and redundant.
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Backward-Elimination on Exam Scores V

® Why eliminate Exam 2 if it is a significant predictor of Final score?

® While each exam, on its own, is a good predictor of the final score, but if examl is
already in the model, exam2 becomes unnecessary and redundant.
get_correlation(data = Grades, Examl ~ Exam2)

## cor
## 1 0.84
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Backward-Elimination on Exam Scores V

® Why eliminate Exam 2 if it is a significant predictor of Final score?

® While each exam, on its own, is a good predictor of the final score, but if examl is
already in the model, exam2 becomes unnecessary and redundant.
get_correlation(data = Grades, Examl ~ Exam2)

## cor
## 1 0.84

® So which model should we go with?
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Backward-Elimination on Exam Scores V

® Why eliminate Exam 2 if it is a significant predictor of Final score?

® While each exam, on its own, is a good predictor of the final score, but if examl is
already in the model, exam2 becomes unnecessary and redundant.
get_correlation(data = Grades, Examl ~ Exam2)

## cor
## 1 0.84

® So which model should we go with?

get_regression_summaries(mod_examl)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
#i#t <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.509 0.499 39.5 6.29 6.42 49.8 0 1 50

get_regression_summaries (mod_exam2)

## # A tibble: 1 x 9

## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.447 0.435 44.5 6.67 6.81 38.8 0 1 50
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Forward-selection

® The second most common model selection techniques is forward-selection:
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Forward-selection

® The second most common model selection techniques is forward-selection:

Begin with a model with no predictors

For each possible predictor, create a model with that predictor added.

Pick the predictor model where the added predictor had the smallest significant p-value.
Repeat the previous 2 steps until no added predictors have significant p-values.
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Forward-selection

® The second most common model selection techniques is forward-selection:

Begin with a model with no predictors

For each possible predictor, create a model with that predictor added.

Pick the predictor model where the added predictor had the smallest significant p-value.
Repeat the previous 2 steps until no added predictors have significant p-values.

® There is no guarantee that forward-selection and backward-elimination will reach the
same model.

Nate Wells Multiple Linear Regression



Selection Strategies
00000000e

Forward-selection

® The second most common model selection techniques is forward-selection:

® Begin with a model with no predictors

® For each possible predictor, create a model with that predictor added.

® Pick the predictor model where the added predictor had the smallest significant p-value.
® Repeat the previous 2 steps until no added predictors have significant p-values.

® There is no guarantee that forward-selection and backward-elimination will reach the
same model.

® Usually, we just use one selection method. Since backward-elimination requires fewer
steps, it is often used.
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