Model Building

Model Selection

Multiple Linear Regression

Nate Wells

Math 141, 4/30/21

Model Building

Model Selection

Selection Strategies

Outline

In this lecture, we will...

- Quantify variance in a linear model using the correlation coefficient
- Discuss metrics for selecting the "best" model
- Describe the forward-selection and backward-elimination procedures for model selection

Section 1

Multiple Linear Regression

Multiple Linear Regression	Model Building	Selection Strategies
0000		

Multiple Regression Model

In a **multiple linear regression model** (MLR), we express the response variable Y as a linear combination of k explanatory variables X_1, X_2, \ldots, X_k :

$$\hat{Y} = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k$$

Multiple Linear Regression	Model Building	
0000		

Multiple Regression Model

In a **multiple linear regression model** (MLR), we express the response variable Y as a linear combination of k explanatory variables X_1, X_2, \ldots, X_k :

$$\hat{Y} = eta_0 + eta_1 \cdot X_1 + eta_2 \cdot X_2 + \dots + eta_k \cdot X_k$$

We use the following R code to fit and summarize a linear model:

```
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)</pre>
```

##	#	A tibble:	4 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	3.26	7.94	0.41	0.686	-13.3	19.8
##	2	X1	-1.24	0.313	-3.95	0.001	-1.89	-0.584
##	3	X2	2.68	1.94	1.38	0.182	-1.36	6.72
##	4	ХЗ	3.20	0.397	8.06	0	2.37	4.02

Multiple Linear Regression	Model Building	
0000		

Multiple Regression Model

In a **multiple linear regression model** (MLR), we express the response variable Y as a linear combination of k explanatory variables X_1, X_2, \ldots, X_k :

$$\hat{Y} = eta_0 + eta_1 \cdot X_1 + eta_2 \cdot X_2 + \dots + eta_k \cdot X_k$$

We use the following R code to fit and summarize a linear model:

```
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)</pre>
```

##	#	A tibble:	4 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	3.26	7.94	0.41	0.686	-13.3	19.8
##	2	X1	-1.24	0.313	-3.95	0.001	-1.89	-0.584
##	3	X2	2.68	1.94	1.38	0.182	-1.36	6.72
##	4	XЗ	3.20	0.397	8.06	0	2.37	4.02

• Which gives us our linear regression formula:

$$\hat{Y} = 3.26 - 1.24 \cdot X_1 + 2.68 \cdot X_2 + 3.2 \cdot X_3$$

Multiple Linear Regression	Model Building	Selection Strategies
0000		

For SLR, we used the correlation coefficient R to assess model strength.

Multiple Linear Regression	Model Building	Selection Strategies
0000		

For SLR, we used the correlation coefficient R to assess model strength.

• The value *R*² has utility too! It represents the percentage of variability in values of the response variable just due to variability in explanatory variable.

Multiple Linear Regression	Model Building	Selection Strategies
0000		

For SLR, we used the correlation coefficient R to assess model strength.

- The value *R*² has utility too! It represents the percentage of variability in values of the response variable just due to variability in explanatory variable.
 - If $R \approx \pm 1$, then $R^2 \approx 1$: nearly all the variability in response is due to variability in the explanatory variable.

Multiple Linear Regression	Model Building	Selection Strategies
0000		

For SLR, we used the correlation coefficient R to assess model strength.

- The value *R*² has utility too! It represents the percentage of variability in values of the response variable just due to variability in explanatory variable.
 - If $R \approx \pm 1$, then $R^2 \approx 1$: nearly all the variability in response is due to variability in the explanatory variable.

Multiple Linear Regression	Model Building	Selection Strategies
0000		

We can also compute R^2 for MLR. In particular,

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{variability in outcomes}} = 1 - \frac{\text{Var}(e_{i})}{\text{Var}(y_{i})}$$

Multiple Linear Regression	Model Building	Selection Strategies
0000		

We can also compute R^2 for MLR. In particular,

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{variability in outcomes}} = 1 - \frac{\text{Var}(e_{i})}{\text{Var}(y_{i})}$$

• Usually, we use software to compute

Multiple Linear Regression	Model Building	Selection Strategies
0000		

We can also compute R^2 for MLR. In particular,

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{variability in outcomes}} = 1 - \frac{\text{Var}(e_{i})}{\text{Var}(y_{i})}$$

 Usually, we use software to compute mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get regression summaries(mod)

A tibble: 1 x 9
r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
<dbl> <dbl > dbl> <dbl > dbl > dbl

Multiple Linear Regression	Model Building	
0000		

We can also compute R^2 for MLR. In particular,

$$R^2 = 1 - rac{ ext{variability in residuals}}{ ext{variability in outcomes}} = 1 - rac{ ext{Var}(e_i)}{ ext{Var}(y_i)}$$

```
    Usually, we use software to compute
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get regression summaries(mod)
```

##	#	A tibble:	1 x 9							
##		r_squared	adj_r_squared	mse	rmse	sigma	statistic	p_value	df	nobs
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.798	0.769	17.0	4.13	4.50	27.6	0	3	25

• But it turns out this formula gives a **biased** estimate of the variability in the *population* explained by the model.

Multiple Linear Regression	Model Building	Selection Strategies
0000		

We can also compute R^2 for MLR. In particular,

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{variability in outcomes}} = 1 - \frac{\text{Var}(e_{i})}{\text{Var}(y_{i})}$$

 Usually, we use software to compute mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get regression summaries(mod)

##	#	A tibble:	1 x 9							
##		r_squared	adj_r_squared	mse	rmse	sigma	statistic	p_value	df	nobs
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.798	0.769	17.0	4.13	4.50	27.6	0	3	25

- But it turns out this formula gives a **biased** estimate of the variability in the *population* explained by the model.
- Instead, we use the adjusted R:

$$R^{2} = 1 - \frac{\operatorname{Var}(e_{i})}{\operatorname{Var}(y_{i})} \cdot \frac{n-1}{n-k-1}$$

Multiple Linear Regression	Model Building	Selection Strategies
0000		

We can also compute R^2 for MLR. In particular,

$$R^{2} = 1 - \frac{\text{variability in residuals}}{\text{variability in outcomes}} = 1 - \frac{\text{Var}(e_{i})}{\text{Var}(y_{i})}$$

 Usually, we use software to compute mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get regression summaries(mod)

##	#	A tibble:	1 x 9							
##		r_squared	adj_r_squared	mse	rmse	sigma	statistic	p_value	df	nobs
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.798	0.769	17.0	4.13	4.50	27.6	0	3	25

- But it turns out this formula gives a **biased** estimate of the variability in the *population* explained by the model.
- Instead, we use the adjusted R:

$$R^{2} = 1 - \frac{\operatorname{Var}(e_{i})}{\operatorname{Var}(y_{i})} \cdot \frac{n-1}{n-k-1}$$

• This adjusted R^2 is usually a bit smaller than R^2 , and the difference decreases as n gets large.

Section 2

Model Building

Nate Wells

Multiple Linear Regression 0000	Model Building O●OOO	Model Selection	Selection Strategies
Modeling Exam Grades			

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

Multiple Linear Regression 0000	Model Building ○●○○○	Model Selection	Selection Strategies

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

• Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).

Multiple Linear Regression	Model Building ○●○○○	Model Selection	Selection Strategies

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.

Multiple Linear Regression 0000	Model Building O●OOO	Model Selection	Selection Strategies

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.
 - That is, $I_{\text{Sophomore}}(x) = 1$ if the observation x is a first year, and 0 otherwise.

Multiple Linear Regression 0000	Model Building ○●○○○	Model Selection	Selection Strategies

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.
 - That is, $I_{\text{Sophomore}}(x) = 1$ if the observation x is a first year, and 0 otherwise.
- An MLR model could be

 $\hat{Y} = 34.2 + 0.6 \cdot X_1 + 0.9 \cdot I_{\mathrm{Sophomore}} - 3.6 \cdot I_{\mathrm{Junior}} - 0.6 \cdot I_{\mathrm{Senior}}$

Multiple Linear Regression	Model Building	Selection Strategies
	0000	

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.
 - That is, $I_{\text{Sophomore}}(x) = 1$ if the observation x is a first year, and 0 otherwise.
- An MLR model could be

 $\hat{Y} = 34.2 + 0.6 \cdot X_1 + 0.9 \cdot I_{\mathrm{Sophomore}} - 3.6 \cdot I_{\mathrm{Junior}} - 0.6 \cdot I_{\mathrm{Senior}}$

• To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a junior, or subtract 0.6 point if you are a senior.

Multiple Linear Regression	Model Building	Selection Strategies
	0000	

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.
 - That is, $I_{\text{Sophomore}}(x) = 1$ if the observation x is a first year, and 0 otherwise.
- An MLR model could be

 $\hat{Y} = 34.2 + 0.6 \cdot X_1 + 0.9 \cdot I_{\mathrm{Sophomore}} - 3.6 \cdot I_{\mathrm{Junior}} - 0.6 \cdot I_{\mathrm{Senior}}$

- To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a junior, or subtract 0.6 point if you are a senior.
- Why no indicator for first-years?

Multiple Linear Regression	Model Building	Selection Strategies
	0000	

Suppose we want to fit a model that predicts final exam score Y as a function of 1st midterm score X_1 and year in school X_2 .

- Note that both Y and X_1 are quantitative, but X_2 is categorical with 4 levels (First-year, Sophomore, Junior, Senior).
- Let $I_{\rm Sophomore}$, $I_{\rm Junior}$, $I_{\rm Senior}$ be the indicator functions for the respective levels.
 - That is, $I_{\text{Sophomore}}(x) = 1$ if the observation x is a first year, and 0 otherwise.
- An MLR model could be

 $\hat{Y} = 34.2 + 0.6 \cdot X_1 + 0.9 \cdot I_{\mathrm{Sophomore}} - 3.6 \cdot I_{\mathrm{Junior}} - 0.6 \cdot I_{\mathrm{Senior}}$

- To predict your final exam score, start with 34.2 points, add 60% of your 1st midterm score, and then add 0.9 points if you are a sophomore, subtract 3.6 points if you are a junior, or subtract 0.6 point if you are a senior.
- Why no indicator for first-years?
 - If you aren't a sophomore, junior, or senior, you must be a first-year.

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

##		Exam1	Exam2	Final	Year
##	1	73	82	83	First
##	2	87	90	83	Soph
##	З	89	89	86	Sr
##	4	58	65	69	First
##	5	80	77	88	Soph

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Data Exploration

Midterm scores, Final score, and year are recorded for 50 (fictitious) intro stat students

##		Exam1	Exam2	Final	Year
##	1	73	82	83	First
##	2	87	90	83	Soph
##	3	89	89	86	Sr
##	4	58	65	69	First
##	5	80	77	88	Soph

Multiple Linear Regression 0000	Model Building 000●0	Model Selection 00000	Selection Strategies

Using the lm function, we create a linear model for Final score as a function of 1st Midterm score and Year:

mod_mt_year<-lm(Final ~ Exam1 + Year, data = Grades)</pre>

Model Fitting

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Model Fitting

Using the lm function, we create a linear model for Final score as a function of 1st Midterm score and Year:

mod_mt_year<-lm(Final ~ Exam1 + Year, data = Grades)</pre>

And we examine the model using the get_regression_table function

get_regression_table(mod_mt_year)

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	З	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Model Fitting

Using the lm function, we create a linear model for Final score as a function of 1st Midterm score and Year:

```
mod_mt_year<-lm(Final ~ Exam1 + Year, data = Grades)</pre>
```

And we examine the model using the get_regression_table function

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	3	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

From the table, our regression equation is

$$\hat{Y} = 34.2 + 0.6 \cdot X_1 + 0.9 \cdot I_{\mathrm{Sophomore}} - 3.6 \cdot I_{\mathrm{Junior}} - 0.6 \cdot I_{\mathrm{Senior}}$$

Multiple Linear Regression	Model Building	Selection Strategies
	00000	

Graph of Parallel Slopes Model

```
ggplot(Grades, aes( x = Exam1, y = Final, color = Year))+
geom_point()+
labs(title = "Parallel Slopes")+
geom_parallel_slopes(se = F) ### Note the different geom
```


Section 3

Model Selection

Nate Wells

Multiple Linear Regression	Model Building	Model Selection	Selection Strategies
0000	00000	○●○○○	

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

Multiple	Regression	

Model Building

Model Selection

Selection Strategies

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	З	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

Model Building

Model Selection

Selection Strategies

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	З	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

In most cases, changing year in school changes exam score by less than 1 point.
Multiple	Regression	

Model Selection

Selection Strategies

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	3	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

- In most cases, changing year in school changes exam score by less than 1 point.
- And for seniors, sample size should be a concern (n = 3)

Multiple	Regression	

Model Selection

Selection Strategies

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	3	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

- In most cases, changing year in school changes exam score by less than 1 point.
- And for seniors, sample size should be a concern (n = 3)
- Using a *t*-test against the null hypothesis that the true coefficient is 0, we see that none of sophomore, junior or senior dummy variables are significant at the $\alpha = 0.05$ level

Multiple	Regression	

Model Selection

Selection Strategies

Model Selection

Does knowing a students year in school really add significant predictive power to the model?

```
get_regression_table(mod_mt_year)
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	34.2	7.25	4.72	0	19.6	48.8
##	2	Exam1	0.636	0.09	7.06	0	0.455	0.817
##	3	YearSoph	0.929	2.12	0.438	0.664	-3.35	5.20
##	4	YearJr	-3.58	2.82	-1.27	0.212	-9.26	2.11
##	5	YearSr	-0.598	3.95	-0.151	0.88	-8.56	7.36

- In most cases, changing year in school changes exam score by less than 1 point.
- And for seniors, sample size should be a concern (n = 3)
- Using a *t*-test against the null hypothesis that the true coefficient is 0, we see that none of sophomore, junior or senior dummy variables are significant at the $\alpha = 0.05$ level
 - It is plausible that there truly is no difference in scores between years, and any observed difference is just due to random chance.

Multiple Linear Regression	Model Building	Model Selection	Selection Strategies
0000	00000	00●00	

Model Selection, cont'd

• On the other hand, we do have data on year in school, so why not use it?

Multiple Linear Regression 0000	Model Building 00000	Model Selection	Selection Strategies

Model Selection, cont'd

- On the other hand, we do have data on year in school, so why not use it?
- We also have data on 2nd exam, so why not include it as well?

Multiple Linear Regression	Model Building	Model Selection	Selection Strategies
		00000	

Model Selection, cont'd

- On the other hand, we do have data on year in school, so why not use it?
- We also have data on 2nd exam, so why not include it as well?
- A regression model which includes all measured variables is called the full model

Selection Strategies

Model Selection, cont'd

- On the other hand, we do have data on year in school, so why not use it?
- We also have data on 2nd exam, so why not include it as well?
- A regression model which includes all measured variables is called the full model

```
mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)</pre>
```

##	#	A tibble:	6 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	31.0	8.19	3.78	0	14.5	47.5
##	2	Exam1	0.511	0.173	2.96	0.005	0.163	0.858
##	3	Exam2	0.162	0.19	0.853	0.398	-0.221	0.546
##	4	YearSoph	0.421	2.21	0.19	0.85	-4.04	4.88
##	5	YearJr	-3.24	2.86	-1.14	0.262	-9.00	2.52
##	6	YearSr	-0.654	3.96	-0.165	0.87	-8.64	7.33

Selection Strategies

Model Selection, cont'd

- On the other hand, we do have data on year in school, so why not use it?
- We also have data on 2nd exam, so why not include it as well?
- A regression model which includes all measured variables is called the full model

```
mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)</pre>
```

##	#	A tibble:	6 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	31.0	8.19	3.78	0	14.5	47.5
##	2	Exam1	0.511	0.173	2.96	0.005	0.163	0.858
##	3	Exam2	0.162	0.19	0.853	0.398	-0.221	0.546
##	4	YearSoph	0.421	2.21	0.19	0.85	-4.04	4.88
##	5	YearJr	-3.24	2.86	-1.14	0.262	-9.00	2.52
##	6	YearSr	-0.654	3.96	-0.165	0.87	-8.64	7.33

• Why don't we always use the full model?

Model Selection

Selection Strategies

Occam's Razor

"Numquam ponenda est pluralitas sine necessitate."

Plurality must never be posited without necessity

Model Selection

Selection Strategies

Occam's Razor

"Numquam ponenda est pluralitas sine necessitate."

Plurality must never be posited without necessity

- William of Ockham, c. 1300

• All else held equal, a simpler model makes better predictions.

Model Selection

Selection Strategies

Occam's Razor

"Numquam ponenda est pluralitas sine necessitate."

Plurality must never be posited without necessity

- All else held equal, a simpler model makes better predictions.
- Adding additional variables to a model increases the likelihood that the model fits to particular features of the sample, rather than general trends in the population.

Model Selection

Selection Strategies

Occam's Razor

"Numquam ponenda est pluralitas sine necessitate."

Plurality must never be posited without necessity

- All else held equal, a simpler model makes better predictions.
- Adding additional variables to a model increases the likelihood that the model fits to particular features of the sample, rather than general trends in the population.
- On the other hand, failing to include important variables may lead to missing relevant relations

Model Selection

Selection Strategies

Occam's Razor

"Numquam ponenda est pluralitas sine necessitate."

Plurality must never be posited without necessity

- All else held equal, a simpler model makes better predictions.
- Adding additional variables to a model increases the likelihood that the model fits to particular features of the sample, rather than general trends in the population.
- On the other hand, failing to include important variables may lead to missing relevant relations
- In statistical/machine learning, this is oft referred to as the Bias-Variance trade-off

Model Selection

Selection Strategies

Selection Criteria

There are several numbers we can use to assess the strength of a model:

- Individual p-values
- $\mathbf{Q} \mathbf{R}^2$
- 8 Residual standard errors
- Ø Overall model p-value
- 6 F-statistic from ANOVA
- 6 Adjusted R^2

Selection Criteria

There are several numbers we can use to assess the strength of a model:

- Individual p-values
- $\mathbf{O} R^2$
- 8 Residual standard errors
- Ø Overall model p-value
- 6 F-statistic from ANOVA
- 6 Adjusted R^2

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the opposite. Some are relatively balanced.

Selection Criteria

There are several numbers we can use to assess the strength of a model:

- Individual p-values
- $\mathbf{2} \mathbf{R}^2$
- 8 Residual standard errors
- Ø Overall model p-value
- 6 F-statistic from ANOVA
- 6 Adjusted R^2

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the opposite. Some are relatively balanced.

• Choices are usually discipline specific, and the particular trade-offs are discussed in advanced statistics and statistical learning courses (like Math 243!)

Selection Criteria

There are several numbers we can use to assess the strength of a model:

- Individual p-values
- $\mathbf{O} R^2$
- 8 Residual standard errors
- Ø Overall model p-value
- 6 F-statistic from ANOVA
- 6 Adjusted R^2

Some numbers lead to decreased Bias at the cost of increased Variance. Others do the opposite. Some are relatively balanced.

• Choices are usually discipline specific, and the particular trade-offs are discussed in advanced statistics and statistical learning courses (like Math 243!)

We'll focus on individual P-values and adjusted R^2

Section 4

Selection Strategies

Multiple	Regression

Model Selection

Selection Strategies

Backward-Elimination

• One of the most common model selection techniques is **backward-elimination**:

Model Selection

Selection Strategies

Backward-Elimination

- One of the most common model selection techniques is backward-elimination:
 - Begin with the full model (with all predictors)
 - Eliminate the predictor with greatest p-value larger than desired significance level
 - Refit the model with remaining predictors and repeat until all are significant

Model Buildir

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores I

```
mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)</pre>
```

##	#	A tibble:	6 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	31.0	8.19	3.78	0	14.5	47.5
##	2	Exam1	0.511	0.173	2.96	0.005	0.163	0.858
##	З	Exam2	0.162	0.19	0.853	0.398	-0.221	0.546
##	4	YearSoph	0.421	2.21	0.19	0.85	-4.04	4.88
##	5	YearJr	-3.24	2.86	-1.14	0.262	-9.00	2.52
##	6	YearSr	-0.654	3.96	-0.165	0.87	-8.64	7.33

get_regression_summaries(mod_full)

##	#	A tibble:	1 x 9							
##		r_squared	adj_r_squared	mse	rmse	sigma	statistic	p_value	df	nobs
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.541	0.489	36.9	6.08	6.48	10.4	0	5	50

Multiple	Regression	

Model Buildir

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores I

```
mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)</pre>
```

##	#	A tibble:	6 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	
##	1	intercept	31.0	8.19	3.78	0	14.5	47.5
##	2	Exam1	0.511	0.173	2.96	0.005	0.163	0.858
##	3	Exam2	0.162	0.19	0.853	0.398	-0.221	0.546
##	4	YearSoph	0.421	2.21	0.19	0.85	-4.04	4.88
##	5	YearJr	-3.24	2.86	-1.14	0.262	-9.00	2.52
##	6	YearSr	-0.654	3.96	-0.165	0.87	-8.64	7.33

```
get_regression_summaries(mod_full)
```

A tibble: 1 x 9
r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
<dbl> <dbl < dbl < dbl <dbl <dbl <dbl > dbl > d

 The p-values for each year dummy variable are larger than 0.05, so we eliminate year from our model.

Multiple	Regression	

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores I

```
mod_full<-lm(Final ~ Exam1 + Exam2 + Year, data = Grades)
get_regression_table(mod_full)</pre>
```

##	#	A tibble:	6 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	
##	1	intercept	31.0	8.19	3.78	0	14.5	47.5
##	2	Exam1	0.511	0.173	2.96	0.005	0.163	0.858
##	3	Exam2	0.162	0.19	0.853	0.398	-0.221	0.546
##	4	YearSoph	0.421	2.21	0.19	0.85	-4.04	4.88
##	5	YearJr	-3.24	2.86	-1.14	0.262	-9.00	2.52
##	6	YearSr	-0.654	3.96	-0.165	0.87	-8.64	7.33

```
get_regression_summaries(mod_full)
```

A tibble: 1 x 9

##	r_squar	ed adj_r	_squared	mse	rmse	sigma	statistic	p_value	df	nobs
##	<db.< th=""><th>></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th><th><dbl></dbl></th></db.<>	>	<dbl></dbl>							
##	1 0.54	11	0.489	36.9	6.08	6.48	10.4	0	5	50

- The p-values for each year dummy variable are larger than 0.05, so we eliminate year from our model.
 - Note: Including categorical variables is "all-or-nothing"; either we include all levels of the variable or we include none. If at least 1 level is significant, we'll leave all in the model.

	Regression	

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores II

Let's fit with just the 2 exam scores:

Selection Strategies

Backward-Elimination on Exam Scores II

```
Let's fit with just the 2 exam scores:
```

```
mod_no_year<-lm(Final ~ Exam1 + Exam2 , data = Grades)
get_regression_table(mod_no_year)</pre>
```

```
## # A tibble: 3 x 7
               estimate std error statistic p value lower ci upper ci
##
     term
                  <dbl>
                            <dbl>
                                      <dbl>
                                               <dbl>
                                                        <dbl>
##
    <chr>>
                                                                 <dbl>
## 1 intercept
                 30.9
                            8.00
                                       3.86
                                                       14.8
                                                                47.0
                                               0
## 2 Exam1
                  0.447
                            0.161
                                       2.78
                                              0.008
                                                     0.124
                                                              0.77
## 3 Exam2
                  0.221
                            0.176
                                       1.26
                                              0.215
                                                      -0.133
                                                                 0.575
```

• Note that the estimates changed in the reduced model.

Selection Strategies

Backward-Elimination on Exam Scores II

```
Let's fit with just the 2 exam scores:
mod_no_year<-lm(Final ~ Exam1 + Exam2 , data = Grades)
get_regression_table(mod_no_year)</pre>
```

##	#	A tibble:	3 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	30.9	8.00	3.86	0	14.8	47.0
##	2	Exam1	0.447	0.161	2.78	0.008	0.124	0.77
##	З	Exam2	0.221	0.176	1.26	0.215	-0.133	0.575

- Note that the estimates changed in the reduced model.
- The p-values for the Exam2 variable is larger than 0.05, so we eliminate Exam2

Multiple Linear Regression	Model Building		Selection Strategies
0000	00000	00000	00000000

Backward-Elimination on Exam Scores II

• But before we create a new model, let's consider R^2 :

Selection Strategies

Backward-Elimination on Exam Scores II

• But before we create a new model, let's consider R^2 : get regression summaries(mod full)

A tibble: 1 x 9
r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
<dbl> <dbl <dbl <dbl > dbl >

A tibble: 1 x 9
r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
<dbl> <dbl < dbl < dbl > <dbl > <dbl

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores II

```
• But before we create a new model, let's consider R^2:
get regression summaries(mod full)
```

```
## # A tibble: 1 x 9
    r squared adj r squared mse rmse sigma statistic p value
##
                                                                  df nobs
##
        <dbl>
                     <dbl> <dbl> <dbl> <dbl><<dbl>
                                                  <db1>
                                                         <dbl> <dbl> <dbl>
                      0.489 36.9 6.08 6.48
## 1
        0.541
                                                  10.4
                                                             0
                                                                   5
                                                                        50
get_regression_summaries(mod_no_year)
```

```
## # A tibble: 1 x 9
##
    r_squared adj_r_squared mse rmse sigma statistic p_value
                                                                  df nobs
##
        <dbl>
                     <dbl> <dbl> <dbl> <dbl> <dbl>
                                                 <dbl>
                                                         <dbl> <dbl> <dbl>
        0.525
                      0.505 38.2 6.18 6.38
                                                  26.0
                                                             0
                                                                   2
                                                                        50
## 1
```

Note that while R² decreased from the full model to the reduced model, adjusted R² actually increased!

Selection Strategies

Backward-Elimination on Exam Scores II

```
• But before we create a new model, let's consider R^2:
get regression summaries(mod full)
```

```
## # A tibble: 1 x 9
    r squared adj r squared mse rmse sigma statistic p value
##
                                                                    df nobs
##
        <dbl>
                      <dbl> <dbl> <dbl> <dbl> <dbl>
                                                   <db1>
                                                           <dbl> <dbl> <dbl>
## 1
        0.541
                      0.489
                             36.9 6.08 6.48
                                                   10.4
                                                               0
                                                                     5
                                                                          50
get regression summaries (mod no year)
```

```
## # A tibble: 1 x 9
##
    r_squared adj_r_squared mse rmse sigma statistic p_value
                                                                   df nobs
##
        <dbl>
                     <dbl> <dbl> <dbl> <dbl> <dbl>
                                                  <dbl>
                                                          <dbl> <dbl> <dbl>
        0.525
                      0.505 38.2 6.18 6.38
                                                   26.0
                                                                    2
                                                                         50
## 1
                                                              0
```

- Note that while R² decreased from the full model to the reduced model, adjusted R² actually increased!
- Recall that adjusted R^2 penalizes R^2 by the number of variables in the model.

Model Selection

Selection Strategies

Backward-Elimination on Exam Scores III

Let's fit the model with just Exam1

Selection Strategies

Backward-Elimination on Exam Scores III

```
Let's fit the model with just Exam1
mod exam1<-lm(Final ~ Exam1 , data = Grades)</pre>
get regression table(mod exam1)
## # A tibble: 2 x 7
##
              estimate std_error statistic p_value lower_ci upper_ci
    term
##
    <chr>>
                 <dbl>
                           <dbl>
                                    <db1>
                                            <dbl>
                                                    <dbl>
                                                             <db1>
                                                   21.2
## 1 intercept
                35.5
                          7.14
                                     4.97
                                                0
                                                            49.9
## 2 Exam1
                 0.617
                          0.087
                                     7.06
                                                    0.441
                                                             0.792
                                                0
get_regression_summaries(mod exam1)
## # A tibble: 1 x 9
##
    r squared adj r squared mse rmse sigma statistic p value
                                                                 df nobs
##
        <dbl>
                     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                 ## 1
        0.509
                     0.499 39.5 6.29 6.42
                                                  49.8
                                                            0
                                                                  1
                                                                       50
```

Selection Strategies

Backward-Elimination on Exam Scores III

```
Let's fit the model with just Exam1
mod exam1<-lm(Final ~ Exam1 , data = Grades)</pre>
get regression table(mod exam1)
## # A tibble: 2 x 7
              estimate std_error statistic p_value lower_ci upper_ci
##
    term
    <chr>>
                 <dbl>
                           <dbl>
                                     <dbl>
                                            <dbl>
                                                     <dbl>
##
                                                              <db1>
                                                    21.2
## 1 intercept
                35.5
                           7.14
                                      4.97
                                                0
                                                             49.9
## 2 Exam1
                 0.617
                           0.087
                                     7.06
                                                     0.441
                                                              0.792
                                                0
get regression summaries(mod exam1)
## # A tibble: 1 x 9
##
    r squared adj r squared mse rmse sigma statistic p value
                                                                  df nobs
##
         <dbl>
                      <dbl> <dbl> <dbl> <dbl> <dbl>
                                                 ## 1
        0.509
                      0.499 39.5 6.29 6.42
                                                  49.8
                                                             0
                                                                   1
                                                                        50
```

All remaining variables are significant, so this is the model we use.

Multiple Linear Regression	Model Building		Selection
0000	00000	00000	00000

Backward-Elimination on Exam Scores IV

Out of curiosity, what would the model with Score ~ Exam2 look like?

```
mod_exam2<-lm(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)</pre>
```

A tibble: 2 x 7 estimate std_error statistic p_value lower_ci upper_ci ## term <chr>> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## ## 1 intercept 32.9 8.51 3.86 0 15.8 50.0 ## 2 Exam2 0.633 0.102 6.23 0 0.429 0.838 Strategies

Selection Strategies

Backward-Elimination on Exam Scores IV

Out of curiosity, what would the model with Score ~ Exam2 look like?

```
mod_exam2<-lm(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)</pre>
```

A tibble: 2 x 7 estimate std error statistic p value lower ci upper ci ## term <chr>> <dbl> <dbl> <dbl> <dbl> <dbl> ## <db1> ## 1 intercept 32.9 8.51 3.86 0 15.8 50.0 ## 2 Exam2 0.633 0.102 6.23 0.429 0.838 0 get regression table(mod exam1)

A tibble: 2 x 7 estimate std_error statistic p_value lower_ci upper_ci ## term ## <chr> <db1> <dbl> <dbl> <dbl> <dbl> <db1> ## 1 intercept 35.5 7.14 4.97 21.2 49.9 0 ## 2 Exam1 0.617 0.087 7.06 0 0.441 0.792

Selection Strategies

Backward-Elimination on Exam Scores IV

Out of curiosity, what would the model with Score ~ Exam2 look like?

```
mod_exam2<-lm(Final ~ Exam2 , data = Grades)
get_regression_table(mod_exam2)</pre>
```

A tibble: 2 x 7 estimate std error statistic p value lower ci upper ci ## term <chr>> <dbl> <dbl> <dbl> <dbl> <dbl> ## <db1> ## 1 intercept 32.9 8.51 3.86 0 15.8 50.0 ## 2 Exam2 0.633 0.102 6.23 0.429 0.838 0 get regression table(mod exam1)

A tibble: 2 x 7 estimate std_error statistic p_value lower_ci upper_ci ## term ## <chr> <db1> <dbl> <dbl> <dbl> <dbl> <db1> ## 1 intercept 35.5 7.14 4.97 21.2 49.9 0 ## 2 Exam1 0.617 0.087 7.06 0 0.441 0.792
Multiple Linear Regression	Model Building		Selection Strategies
0000	00000	00000	000000000

• Why eliminate Exam 2 if it is a significant predictor of Final score?

	Model Building		Selection Strategies
0000	00000	00000	000000000

- Why eliminate Exam 2 if it is a significant predictor of Final score?
 - While each exam, on its own, is a good predictor of the final score, but if exam1 is already in the model, exam2 becomes unnecessary and redundant.

	Model Building		Selection Strategies
0000	00000	00000	000000000

- Why eliminate Exam 2 if it is a significant predictor of Final score?
 - While each exam, on its own, is a good predictor of the final score, but if exam1 is already in the model, exam2 becomes unnecessary and redundant.

get_correlation(data = Grades, Exam1 ~ Exam2)

cor ## 1 0.84

	Model Building		Selection Strategies
0000	00000	00000	000000000

- Why eliminate Exam 2 if it is a significant predictor of Final score?
 - While each exam, on its own, is a good predictor of the final score, but if exam1 is already in the model, exam2 becomes unnecessary and redundant.

get_correlation(data = Grades, Exam1 ~ Exam2)

cor ## 1 0.84

• So which model should we go with?

	Model Building		Selection Strategies
0000	00000	00000	000000000

- Why eliminate Exam 2 if it is a significant predictor of Final score?
 - While each exam, on its own, is a good predictor of the final score, but if exam1 is already in the model, exam2 becomes unnecessary and redundant.

```
get_correlation(data = Grades, Exam1 ~ Exam2)
```

cor ## 1 0.84

So which model should we go with?

```
get_regression_summaries(mod_exam1)
```

A tibble: 1 x 9
r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
<dbl> <dbl = dbl = dbl

Multiple	Regression

Model Buildin 00000 Model Selection

Selection Strategies

Forward-selection

• The second most common model selection techniques is forward-selection:

Forward-selection

- The second most common model selection techniques is forward-selection:
 - Begin with a model with no predictors
 - For each possible predictor, create a model with that predictor added.
 - Pick the predictor model where the added predictor had the smallest significant p-value.
 - Repeat the previous 2 steps until no added predictors have significant p-values.

Forward-selection

- The second most common model selection techniques is forward-selection:
 - Begin with a model with no predictors
 - For each possible predictor, create a model with that predictor added.
 - Pick the predictor model where the added predictor had the smallest significant p-value.
 - Repeat the previous 2 steps until no added predictors have significant p-values.
- There is no guarantee that forward-selection and backward-elimination will reach the same model.

Forward-selection

- The second most common model selection techniques is forward-selection:
 - Begin with a model with no predictors
 - For each possible predictor, create a model with that predictor added.
 - Pick the predictor model where the added predictor had the smallest significant p-value.
 - Repeat the previous 2 steps until no added predictors have significant p-values.
- There is no guarantee that forward-selection and backward-elimination will reach the same model.
- Usually, we just use one selection method. Since backward-elimination requires fewer steps, it is often used.