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Outline

In this lecture, we will. . .

• Use theory to find the standard error for one sample proportions
• Calculate confidence intervals and perform hypothesis tests for proportions using the
theory-based method
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The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.

• The mean of this variable is p, and the standard deviation is
√

p(1− p)
• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:

• We are averaging across each person in the sample the variable that takes the value 1 if
the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n

Nate Wells Inference for a Single Proportion Math 141, 4/5/21 3 / 12



Examples

Using data from the gss General Social Survey. . .
• 56% identified as female
• 27.2% obtained a college degree
• 96.7% were 21 or older

If we draw samples of size 100 from the GSS, the sampling distributions look like. . .
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Critical Values

• The critical value z∗ for a C% confidence interval is the value so that C% of area is
between −z∗ and z∗ in the standard Normal distribution.

Area = C%
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Critical Values

• Previously, we saw that for Normal distributions, 95% of observations are within 2
standard deviations of the mean. So the critical value for 95% confidence is

z∗ = 2
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Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is

statistic± z∗ · SE

where z∗ is the critical value for C% confidence and SE is the standard error for the
statistic.

• The standard error for a sample proportion p̂ is SE =
√

p(1−p)
n . Since we don’t know

p, we estimate it in the SE formula with p̂.

Theorem
Suppose an SRS of size n is collected from a population with parameter p. If n is large
enough so that both np̂ and n(1− p̂) are at least 10, then the confidence interval for p is

p̂ ± z∗

√
p̂(1− p̂)

n
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An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.

• Our sample statistic is p̂ = 0.47
p_hat<-0.47
p_hat

## [1] 0.47

• The critical value z∗ for 99% confidence is z∗ = 2.58
z<-qnorm(.995, 0 , 1)
z

## [1] 2.575829
• The standard error for p̂ is SE = 0.016

SE<-sqrt(p_hat*(1- p_hat)/1012)
SE

## [1] 0.01568905
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An Example

• The theory-based confidence interval is (0.43, 0.51)
CI_low<-p_hat-z*SE
CI_high<-p_hat+z*SE

## CI_low CI_high
## 1 0.4295877 0.5104123

• How does this compare to the bootstrap method?
health %>% specify(response = agree, success = "yes") %>%

generate(reps=10000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .99, type = "se", point_estimate = p_hat)

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.429 0.511
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z-Scores

• The z-score for a test statistic x with standard error SE and mean µ under the Null
hypothesis is

z = x − µ
SE

• Suppose X is approximately Normal with mean µ and standard deviation σ. Then

Z = X − µ
σ

is approximately standard Normal.
• By location-scale invariance,

P(X > x) = P
(
Z >

x − µ
σ

)
• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided
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Hypothesis Tests

By the central limit theorem, if H0 : p = p0 is true, then for large n, the standard error for
the sample statistic p̂ is

SE =

√
p0(1− p0)

n

Theorem
To test H0 : p = p0 against Ha : p 6= p0 (or the one-sided alternative) we use the
standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

If n is large enough so that both np̂ and n(1− p̂) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.
• We test H0 : p0 = 1/3 against Ha : p0 6= 1/3, where p0 is the theoretical frequency a
player chooses rock on the first turn.

• The sample statistic is p̂ = 0.55
p_hat<-66/119
p_hat

## [1] 0.5546218
• The standard error is SE = 0.04

SE<- sqrt((1/3)*(1-(1/3))/119)
SE

## [1] 0.04321358
• The test statistic is z = 5.12

z<- (p_hat - 1/3)/ SE
z

## [1] 5.120809
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Rock-Paper-Scissors

• The P-Value (probability of observing a sample proportion as extreme as 66/119) is
0.0000003

Pval<- 2*pnorm(-z, mean = 0, sd = 1)
Pval

## [1] 3.04227e-07

• We reject the null hypothesis in favor of the alternative at significance α = 0.05.
How does this compare to the simulation based test?
rps %>% specify(response = choice, success = "rock") %>%

hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = p_hat, direction = "both")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0
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