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Single Proportions Difference in Proportions

Outline

In this lecture, we will. . .

• Perform hypothesis tests for proportions using the theory-based method
• Investigate the theoretical distribution for differences in proportions
• Calculate confidence intervals and conduct hypothesis tests for differences in
proportions
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Single Proportions Difference in Proportions

Section 1

Single Proportions
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Single Proportions Difference in Proportions

The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

• Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
• The mean of this variable is p, and the standard deviation is

√
p(1− p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• We are averaging across each person in the sample the variable that takes the value 1 if

the individual is a success and 0 otherwise.

• By the central limit theorem, if n is large, then p̂ is approximately Normal, with mean
p and standard deviation

√
p(1−p)

n
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Single Proportions Difference in Proportions

Examples

Using data from the gss General Social Survey. . .
• 47.4% identified as female
• 34.8% obtained a college degree
• 98.2% were 21 or older

If we draw samples of size 100 from the GSS, the sampling distributions look like. . .
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Single Proportions Difference in Proportions

Critical Values

• The critical value z∗ for a C% confidence interval is the value so that C% of area is
between −z∗ and z∗ in the standard Normal distribution.

Area = C%
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• Previously, we saw that for Normal distributions, 95% of observations are within 2
standard deviations of the mean. So the critical value for 95% confidence is

z∗ = 2
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Single Proportions Difference in Proportions

Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is

statistic± z∗ · SE

where z∗ is the critical value for C% confidence and SE is the standard error for the
statistic.

• The standard error for a sample proportion p̂ is SE =
√

p(1−p)
n . Since we don’t know

p, we estimate it in the SE formula with p̂.

Theorem
Suppose an SRS of size n is collected from a population with parameter p. If n is large
enough so that both np̂ and n(1− p̂) are at least 10, then the confidence interval for p is

p̂ ± z∗

√
p̂(1− p̂)

n
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Single Proportions Difference in Proportions

An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.

• Our sample statistic is p̂ = 0.47
p_hat<-0.47
p_hat

## [1] 0.47

• The critical value z∗ for 99% confidence is z∗ = 2.58
z<-qnorm(.995, 0 , 1)
z

## [1] 2.575829
• The standard error for p̂ is SE = 0.016

SE<-sqrt(p_hat*(1- p_hat)/1012)
SE

## [1] 0.01568905
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Single Proportions Difference in Proportions

An Example

• The theory-based confidence interval is (0.43, 0.51)
CI_low<-p_hat-z*SE
CI_high<-p_hat+z*SE

## CI_low CI_high
## 1 0.4295877 0.5104123

• How does this compare to the bootstrap method?
health %>% specify(response = agree, success = "yes") %>%

generate(reps=10000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .99, type = "se", point_estimate = p_hat)

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.429 0.511
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Single Proportions Difference in Proportions

z-Scores

• The z-score for a statistic X with standard error SE and mean µ under the Null
hypothesis is

Z = X − µ
SE

• The z-score for a statistic X measures how far away it is from the mean, in units of
standard error

• If X is approximately Normal with mean µ and standard deviation σ, then its z-score is
approximately standard Normal (mean = 0, sd = 1).
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Single Proportions Difference in Proportions

P-Values

• By location-scale invariance, if X is Normal with mean µ and standard error SE and
Z is standard Normal, then

P(X > x) = P
(
Z >

x − µ
SE

)

• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided
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Single Proportions Difference in Proportions

Hypothesis Tests

By the central limit theorem, if H0 : p = p0 is true, then for large n, the standard error for
the sample statistic p̂ is

SE =

√
p0(1− p0)

n

Theorem
To test H0 : p = p0 against Ha : p 6= p0 (or the one-sided alternative) we use the
standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

If n is large enough so that both np̂ and n(1− p̂) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.
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Single Proportions Difference in Proportions

Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.
• We test H0 : p0 = 1/3 against Ha : p0 6= 1/3, where p0 is the theoretical frequency a
player chooses rock on the first turn.

• The sample statistic is p̂ = 0.55
p_hat<-66/119
p_hat

## [1] 0.5546218
• The standard error is SE = 0.04

SE<- sqrt((1/3)*(1-(1/3))/119)
SE

## [1] 0.04321358
• The test statistic is z = 5.12

z<- (p_hat - 1/3)/ SE
z

## [1] 5.120809
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Single Proportions Difference in Proportions

Rock-Paper-Scissors

• The P-Value (probability of observing a sample proportion as extreme as 66/119) is
0.0000003

Pval<- 2*pnorm(-z, mean = 0, sd = 1)
Pval

## [1] 3.04227e-07

• We reject the null hypothesis in favor of the alternative at significance α = 0.05.
How does this compare to the simulation based test?
rps %>% specify(response = choice, success = "rock") %>%

hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = p_hat, direction = "both")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0
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Single Proportions Difference in Proportions

Section 2

Difference in Proportions
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Single Proportions Difference in Proportions

Difference in Proportions

• Suppose we have two populations and wish to compare the proportions p1 and p2 of
the level of a categorical variable in each population.

• That is, we want to know the value of the difference p1 − p2 in proportion.
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Value 2

Difference in Proportions

• A reasonable point estimate for p1 − p2 is the difference in sample proportions p̂1 − p̂2
for a sample taken from the 1st and 2nd populations.
• As long as we can verify that the statistic p̂1 − p̂2 has an approximately Normal
distribution, we can use the same techniques we used for single sample proportions.
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Single Proportions Difference in Proportions

Distribution for p̂1 − p̂2
• We know that individually, both p̂1 and p̂2 are approximately normal:

Sample 1 Sample 2
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• What about p̂1 − p̂2?
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Simulation−Based Bootstrap Distribution

• In general, the sum or difference of independent Normal variables will also be
Normal, with variance equal to the sum of individual variances.
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Single Proportions Difference in Proportions

Conditions for Theory-based Normal Approximation

Theorem
The difference p̂1 − p̂2 is approximately Normal when

1 Each sample proportion is approximatly normal (≥ 10 success/failure)
2 The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

SEp̂1−p̂2 =
√

SE 2
p̂1 + SE 2

p̂2 =
√

p̂1(1− p̂1)
n1

+ p̂2(1− p̂2)
n2

• Importantly, we know the distribution is Normal and we have the standard error
• We can use qnorm to find critical values for confidence intervals and pnorm to compute

P-values for hypothesis tests
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Single Proportions Difference in Proportions

Partisanship

• Was there really a difference in the proportion of Democrats that view Republicans as
close-minded compared to Republicans that view Democrats the same? Or is the
difference just due to random sampling?
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Single Proportions Difference in Proportions

Confidence Intervals

Let’s use the Normal approximation.

Elsewhere in the study, we find the number of Republicans and Democrats surveyed were
4948 and 4947, respectively.
n_r<-4948
n_d<-4947

p_hat_r<-0.64
p_hat_d<-0.75

• Our standard error is therefore 0.009
SE<-sqrt(p_hat_r*(1-p_hat_r)/n_r + p_hat_d*(1-p_hat_d)/n_d )
SE

## [1] 0.00919054
• At a 95% confidence level, the critical value is z∗ = 1.96

z<-qnorm(.975)
z

## [1] 1.959964
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Single Proportions Difference in Proportions

Confidence Intervals II

• Assembling these pieces, the confidence interval for pr − pd is

(p̂r − p̂d)± z∗ · SE
ci_low<-p_hat_r - p_hat_d - z*SE
ci_high<-p_hat_r - p_hat_d + z*SE

c(ci_low, ci_high)

## [1] -0.12801313 -0.09198687

• Note that both endpoints of the interval are less than 0, suggesting that the true
difference in proportions between Republicans and Democrats is negative
• i.e. a greater proportion of Democrats hold the view that Republicans as closed-minded

compared to the converse
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Single Proportions Difference in Proportions

Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.

• We’ll use the pew data set.
pew %>% group_by(party,close_minded) %>%

summarize(N = n()) %>%
mutate(prop = N / sum(N))

## # A tibble: 4 x 4
## # Groups: party [2]
## party close_minded N prop
## <fct> <fct> <int> <dbl>
## 1 Democrat no 1237 0.250
## 2 Democrat yes 3710 0.750
## 3 Republican no 1781 0.360
## 4 Republican yes 3167 0.640
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Single Proportions Difference in Proportions

Confidence Interval via infer II
boot<-pew %>%

specify(close_minded ~ party, success = "yes" ) %>%
generate(reps = 1000, type = "bootstrap" ) %>%
calculate( "diff in props", order = c("Republican", "Democrat") )

interval <-boot %>% get_confidence_interval(level = .95, type = "se",
point_estimate = p_hat_r - p_hat_d)

interval

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.128 -0.0920
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Single Proportions Difference in Proportions

Pooled sample for Hypothesis Tests

• Suppose we are interested in testing the following hypotheses

H0 : p1 = p2 Ha : p1 6= p2

• If the null hypothesis is true, collecting a sample of sizes n1 and n2 from each
population is the same as collecting a single sample of size n1 + n2.
• So we may instead consider the pooled proportion p̂ given by

p̂ =
overall successes

overall sample size
=

n1p̂1 + n2p̂2
n1 + n2

• This gives a standard error for the null distribution of

SE =
√

p̂(1− p̂)
n1

+ p̂(1− p̂)
n2
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Single Proportions Difference in Proportions

Partisanship over Time

• Was there really a change in the proportion of Democrats that view Republicans as
close-minded between 2016 and 2019?
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Single Proportions Difference in Proportions

Hypothesis Tests

We test
H0 : p16 = p19 Ha : p16 6= p19

• Let’s use the Normal approximation. In 2016, the number of participants was 4948
and in 2019, the number was 2947. This gives a pooled proportion of p̂ = 0.725

n_16<-4948
n_19<-4947

p_hat_16<-.7
p_hat_19<-.75

p_hat<-(p_hat_16*n_16 + p_hat_19*n_19)/(n_16 + n_19)

p_hat

## [1] 0.7249975
• The standard error for the null distribution is 0.009

SE <- sqrt( p_hat*(1- p_hat)/n_16 + p_hat*(1- p_hat)/n_19 )
SE

## [1] 0.008977568
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Single Proportions Difference in Proportions

Hypothesis Tests II

• Our test statistic is
z = p̂16 − p̂19

SE = −5.57
z <- (p_hat_16 - p_hat_19)/SE
z

## [1] -5.569437

• The P-value for this statistic is 0.00000002
P_value<-2*pnorm(z,0 ,1)
P_value

## [1] 2.555634e-08
• The test is significant at α = 0.01 and we reject the null hypothesis.

• It is unlikely that the observed difference in proportions is due to chance, if the
popualtions truly had the same proportion.
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Single Proportions Difference in Proportions

Hypothesis Test via infer

Let’s now use the pew2 data

pew2 %>% group_by(year,close_minded) %>%
summarize(N = n()) %>%
mutate(prop = N / sum(N))

## # A tibble: 4 x 4
## # Groups: year [2]
## year close_minded N prop
## <fct> <fct> <int> <dbl>
## 1 2016 no 1484 0.300
## 2 2016 yes 3464 0.700
## 3 2019 no 1237 0.250
## 4 2019 yes 3710 0.750
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Single Proportions Difference in Proportions

Hypothesis Tests via infer II
nulldist<-pew2 %>%

specify(close_minded ~ year, success = "yes" ) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute" ) %>%
calculate( "diff in props", order = c("2016", "2019") )

p_value <-nulldist %>% get_p_value(obs_stat = (p_hat_16 - p_hat_19),
direction = "both")

p_value

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0
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