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In this lecture, we will. . .
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Outline

In this lecture, we will. . .
® Perform hypothesis tests for proportions using the theory-based method
® |nvestigate the theoretical distribution for differences in proportions

® Calculate confidence intervals and conduct hypothesis tests for differences in
proportions
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Single Proportions
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The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.
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The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

® Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.
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The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

® Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.

® The mean of this variable is p, and the standard deviation is 1/ p(1 — p)
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The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

® Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.

® The mean of this variable is p, and the standard deviation is 1/ p(1 — p)

® |f we instead take an SRS of size n from the population, we can view the sample
proportion p as a sample mean:
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The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

® Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.

® The mean of this variable is p, and the standard deviation is 1/ p(1 — p)

® |f we instead take an SRS of size n from the population, we can view the sample
proportion p as a sample mean:
® We are averaging across each person in the sample the variable that takes the value 1 if
the individual is a success and 0 otherwise.

Nate Wells Inference for a 1 and 2 Proportions



Single Proportions
0000000000000 00

The Sampling Distribution for Sample Proportion

® Consider a population variable that takes only two levels, success S and failure F. Let
p be the proportion of success in the population.

® Suppose we randomly choose a single observation from a population, and denote the
result as 1 if observation is S and 0 if it is F.

® The mean of this variable is p, and the standard deviation is 1/ p(1 — p)

® |f we instead take an SRS of size n from the population, we can view the sample

proportion p as a sample mean:
® We are averaging across each person in the sample the variable that takes the value 1 if
the individual is a success and 0 otherwise.

® By the central limit theorem, if n is large, then p is approximately Normal, with mean

p and standard deviation @
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Examples

Using data from the gss General Social Survey. ..

® 47.4% identified as female
® 34.8% obtained a college degree
® 08.2% were 21 or older
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Examples

Using data from the gss General Social Survey. ..

® 47.4% identified as female
® 34.8% obtained a college degree
® 08.2% were 21 or older

If we draw samples of size 100 from the GSS, the sampling distributions look like. . .
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Examples

Using data from the gss General Social Survey. ..

® 47.4% identified as female
® 34.8% obtained a college degree
® 08.2% were 21 or older

If we draw samples of size 100 from the GSS, the sampling distributions look like. . .

Proportion Female Proportion with College Degree Proportion Over 21
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SE = sqri(.34(1- :34)/100)) = 0.048

stat

SE = sqrt(.47(1- .47)/100) = 0.05 SE = sqrt(.98(1- .98)/100) = 0.01
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Critical Values

® The critical value z* for a C% confidence interval is the value so that C% of area is
between —z* and z* in the standard Normal distribution.
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Critical Values

® The critical value z* for a C% confidence interval is the value so that C% of area is
between —z* and z* in the standard Normal distribution.

Critical Values
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Critical Values

® The critical value z* for a C% confidence interval is the value so that C% of area is
between —z* and z* in the standard Normal distribution.

Critical Values
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X

® Previously, we saw that for Normal distributions, 95% of observations are within 2
standard deviations of the mean. So the critical value for 95% confidence is

z'=2

Math 141,
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Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is
statistic + z* - SE

where z* is the critical value for C% confidence and SE is the standard error for the
statistic.
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Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is
statistic + z* - SE

where z* is the critical value for C% confidence and SE is the standard error for the
statistic.

® The standard error for a sample proportion p is SE = @. Since we don't know
p, we estimate it in the SE formula with p.

Nate Wells Inference for a 1 and 2 Proportions Math 141,



Single Proportions
0000e0000000000

Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is
statistic + z* - SE

where z* is the critical value for C% confidence and SE is the standard error for the
statistic.

® The standard error for a sample proportion p is SE = @. Since we don't know
p, we estimate it in the SE formula with p.

Suppose an SRS of size n is collected from a population with parameter p. If n is large
enough so that both np and n(1 — p) are at least 10, then the confidence interval for p is

A * ﬁ)(l_f))
+ e e
Ptz =
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An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.
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An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.

® QOur sample statistic is p = 0.47
p_hat<-0.47
p_hat

## [1] 0.47
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An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.

® QOur sample statistic is p = 0.47

p_hat<-0.47
p_hat

## [1] 0.47

® The critical value z* for 99% confidence is z* = 2.58

z<-qnorm(.995, 0 , 1)
z

## [1] 2.575829
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An Example

On June 28, 2012 the U.S. Supreme Court upheld the much debated 2010 healthcare law,
declaring it constitutional. A Gallup poll released the day after this decision indicates that
47% of 1,012 Americans agreed with this decision. Use the theory-based method at 99%
confidence to estimate the true proportion of Americans that agreed with this decision.

® QOur sample statistic is p = 0.47

p_hat<-0.47
p_hat

## [1] 0.47

® The critical value z* for 99% confidence is z* = 2.58

z<-qnorm(.995, 0 , 1)
z

## [1] 2.575829

® The standard error for p is SE = 0.016
SE<-sqrt(p_hat*(1- p_hat)/1012)
SE

## [1] 0.01568905
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An Example

® The theory-based confidence interval is (0.43,0.51)
CI_low<-p_hat-z*SE
CI_high<-p_hat+z*SE

## CI_low CI_high
## 1 0.4295877 0.5104123
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An Example

® The theory-based confidence interval is (0.43,0.51)
CI_low<-p_hat-z*SE
CI_high<-p_hat+z*SE

## CI_low CI_high
## 1 0.4295877 0.5104123

® How does this compare to the bootstrap method?
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An Example

® The theory-based confidence interval is (0.43,0.51)

CI_low<-p_hat-z*SE
CI_high<-p_hat+z*SE

## CI_low CI_high
## 1 0.4295877 0.5104123

® How does this compare to the bootstrap method?

health 7>’ specify(response = agree, success = "yes") %>}
generate(reps=10000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .99, type = "se", point_estimate = p_hat)

## # A tibble: 1 x 2

## lower_ci upper_ci
#it <dbl> <dbl>
##t 1 0.429 0.511
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z-Scores

® The z-score for a statistic X with standard error SE and mean p under the Null
hypothesis is
_X—p

z SE
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z-Scores

® The z-score for a statistic X with standard error SE and mean p under the Null
hypothesis is
_X—p

z SE

® The z-score for a statistic X measures how far away it is from the mean, in units of
standard error
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z-Scores

® The z-score for a statistic X with standard error SE and mean p under the Null
hypothesis is
_X—p

z SE

® The z-score for a statistic X measures how far away it is from the mean, in units of
standard error

® |f X is approximately Normal with mean p and standard deviation o, then its z-score is
approximately standard Normal (mean = 0, sd = 1).
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z-Scores

® The z-score for a statistic X with standard error SE and mean p under the Null
hypothesis is

X—p
Z:
SE

® The z-score for a statistic X measures how far away it is from the mean, in units of
standard error

® |f X is approximately Normal with mean p and standard deviation o, then its z-score is
approximately standard Normal (mean = 0, sd = 1).

Sampling Distribution for Statistic X
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z-Scores

® The z-score for a statistic X with standard error SE and mean p under the Null
hypothesis is

_X—p
- SE

Z
® The z-score for a statistic X measures how far away it is from the mean, in units of
standard error

® |f X is approximately Normal with mean p and standard deviation o, then its z-score is
approximately standard Normal (mean = 0, sd = 1).

Distribution for z-scores for X
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P-Values

® By location-scale invariance, if X is Normal with mean x and standard error SE and
Z is standard Normal, then

P(X>x):P<Z> XS_E“)
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P-Values

® By location-scale invariance, if X is Normal with mean x and standard error SE and
Z is standard Normal, then

P(X>x):P<Z> XS_E“)

® |f we want to compute a P-Value for test statistic x, we can instead compute a
P-value for its z-score z:

P-value = P(Z>=z if H, is one-sided right
P-value = P(Z<:z if H, is one-sided left
P-value = 2-P(Z>|z|) if Hais two-sided
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P-Values

® By location-scale invariance, if X is Normal with mean x and standard error SE and
Z is standard Normal, then

P(X>x):P<Z> XS_E“)

® |f we want to compute a P-Value for test statistic x, we can instead compute a
P-value for its z-score z:

P-value = P(Z>=z if H, is one-sided right
P-value = P(Z<:z if H, is one-sided left
P-value = 2-P(Z>|z|) if Hais two-sided
1-sided H_a (right)
0.4
.. 034
2 024
[
B 011
0.0
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P-Values

® By location-scale invariance, if X is Normal with mean x and standard error SE and
Z is standard Normal, then

P(X>x):P<Z> XS_E“)

® |f we want to compute a P-Value for test statistic x, we can instead compute a
P-value for its z-score z:

P-value = P(Z>=z if H, is one-sided right
P-value = P(Z<:z if H, is one-sided left
P-value = 2-P(Z>|z|) if Hais two-sided

1-sided H_a (left)
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P-Values

® By location-scale invariance, if X is Normal with mean x and standard error SE and
Z is standard Normal, then

P(X>x):P<Z> XS_E“)

® |f we want to compute a P-Value for test statistic x, we can instead compute a
P-value for its z-score z:

P-value = P(Z>=z if H, is one-sided right
P-value = P(Z<:z if H, is one-sided left
P-value = 2-P(Z>|z|) if Hais two-sided

2-sided H_a
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Hypothesis Tests

By the central limit theorem, if Ho : p = po is true, then for large n, the standard error for
the sample statistic p is

SE— /Pl =)

n
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Hypothesis Tests

By the central limit theorem, if Ho : p = po is true, then for large n, the standard error for
the sample statistic p is

SE— /Pl =)

Theorem

| :

To test Ho : p = po against H, : p # po (or the one-sided alternative) we use the
standardized test statistic N
_P— P

Po(1—po)

n

zZ =

If n is large enough so that both np and n(1 — p) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

Nate Wells

Inference for a 1 and 2 Proportions



Single Proportions
0000000000000 e0

Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.

® We test Hp : po = 1/3 against H, : po # 1/3, where py is the theoretical frequency a
player chooses rock on the first turn.
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.

® We test Hp : po = 1/3 against H, : po # 1/3, where py is the theoretical frequency a
player chooses rock on the first turn.

® The sample statistic is p = 0.55

p_hat<-66/119
p_hat

## [1] 0.5546218
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.

® We test Hp : po = 1/3 against H, : po # 1/3, where py is the theoretical frequency a
player chooses rock on the first turn.

® The sample statistic is p = 0.55

p_hat<-66/119
p_hat

## [1] 0.5546218

® The standard error is SE = 0.04
SE<- sqrt((1/3)*(1-(1/3))/119)
SE

## [1] 0.04321358
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Rock-Paper-Scissors

In Rock-Paper-Scissors, each player chooses one of 3 symbols (Rock, Paper, Scissors). Are
all three options chosen with equal frequency?

A study observed that for 119 people playing Rock-Paper-Scissors in an official tournament,
66 players selected Rock on their first turn.

® We test Hp : po = 1/3 against H, : po # 1/3, where py is the theoretical frequency a
player chooses rock on the first turn.

® The sample statistic is p = 0.55
p_hat<-66/119
p_hat
## [1] 0.5546218

® The standard error is SE = 0.04
SE<- sqrt((1/3)*(1-(1/3))/119)
SE

## [1] 0.04321358

® The test statistic is z = 5.12
z<- (p_hat - 1/3)/ SE
z

Q209
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Rock-Paper-Scissors

® The P-Value (probability of observing a sample proportion as extreme as 66,/119) is
0.0000003

Pval<- 2#pnorm(-z, mean = 0, sd = 1)
Pval

## [1] 3.04227e-07
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Rock-Paper-Scissors

® The P-Value (probability of observing a sample proportion as extreme as 66,/119) is
0.0000003

Pval<- 2#pnorm(-z, mean = 0, sd = 1)
Pval

## [1] 3.04227e-07
® We reject the null hypothesis in favor of the alternative at significance o = 0.05.
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Rock-Paper-Scissors

® The P-Value (probability of observing a sample proportion as extreme as 66,/119) is
0.0000003

Pval<- 2#pnorm(-z, mean = 0, sd = 1)
Pval

## [1] 3.04227e-07
® We reject the null hypothesis in favor of the alternative at significance o = 0.05.

How does this compare to the simulation based test?
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Rock-Paper-Scissors

® The P-Value (probability of observing a sample proportion as extreme as 66,/119) is
0.0000003

Pval<- 2#pnorm(-z, mean = 0, sd = 1)
Pval
## [1] 3.04227e-07
® We reject the null hypothesis in favor of the alternative at significance o = 0.05.

How does this compare to the simulation based test?

rps %>}, specify(response = choice, success = "rock") %>%
hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = p_hat, direction = "both")

## # A tibble: 1 x 1

## p_value
## <dbl>
## 1 0
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Section 2

Difference in Proportions
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Difference in Proportions

® Suppose we have two populations and wish to compare the proportions p; and p, of
the level of a categorical variable in each population.
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Difference in Proportions

® Suppose we have two populations and wish to compare the proportions p; and p, of
the level of a categorical variable in each population.

® That is, we want to know the value of the difference p1 — p> in proportion.
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Difference in Proportions

® Suppose we have two populations and wish to compare the proportions p; and p, of
the level of a categorical variable in each population.
® That is, we want to know the value of the difference p1 — p> in proportion.

Difference in Proportions
1.00-

variable
€
é 050~ . Value 1
B vae2
0.25-
0.00-
Population 1 Population 2
population
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Difference in Proportions

® Suppose we have two populations and wish to compare the proportions p; and p, of
the level of a categorical variable in each population.

® That is, we want to know the value of the difference p1 — p> in proportion.

Difference in Proportions
1.00-

variable

. Value 1
B vae2

0.00-

Population 1 Population 2
population

® A reasonable point estimate for p; — p» is the difference in sample proportions p1 — po
for a sample taken from the 1st and 2nd populations.
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Difference in Proportions

® Suppose we have two populations and wish to compare the proportions p; and p, of
the level of a categorical variable in each population.

® That is, we want to know the value of the difference p1 — p> in proportion.

Difference in Proportions
1.00-

variable

. Value 1
B vae2

0.00-

Population 1 Population 2
population

® A reasonable point estimate for p; — p» is the difference in sample proportions p1 — po
for a sample taken from the 1st and 2nd populations.

® As long as we can verify that the statistic p1 — p> has an approximately Normal
distribution, we can use the same techniques we used for single sample proportions.
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Distribution for p; — p»

® We know that individually, both p; and p, are approximately normal:
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Distribution for p; — p»

® We know that individually, both p; and p, are approximately normal:

Sample 1 Sample 2
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stat
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® We know that individually, both p; and p, are approximately normal:

sample 1 sample 2
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II-
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03 05 0. 05

04 6 07 03 04
stat

07

® What about p1 — p2?
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Distribution for p; — p»

® We know that individually, both p; and p, are
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Simulation—Based Bootstrap Distribution
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® What about p1 — p2?

70‘ 1
stat

0.0
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Distribution for p; — p»

® We know that individually, both p; and p, are approximately normal:

sample 1 sample 2

|III_ lIIIIl-
y 0‘5 0. 0‘4 : 0‘6

0.4 05

150
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.
03

6 07 03 07

stat
® What about p1 — p2?

Simulation—Based Bootstrap Distribution
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N I I
0- 7--l .-_
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&
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stat

® |n general, the sum or difference of independent Normal variables will also be
Normal, with variance equal to the sum of individual variances.
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Conditions for Theory-based Normal Approximation

Theorem

The difference p1 — p» is approximately Normal when
® Each sample proportion is approximatly normal (> 10 success/failure)
® The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

o — 2 2 bl(l _/31) /32(1 — lA’2)
SEp—p, = 4/ SEZ + SEZ = \/ PR
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Conditions for Theory-based Normal Approximation

Theorem

The difference p1 — p» is approximately Normal when
® Each sample proportion is approximatly normal (> 10 success/failure)
® The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

- 2 s _ [Pl —p1) | P(l—p2)
SEp—p, = SEf,l + SEf,2 = \/ m 4F .

® |mportantly, we know the distribution is Normal and we have the standard error
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Conditions for Theory-based Normal Approximation

Theorem

The difference p1 — p» is approximately Normal when
® Each sample proportion is approximatly normal (> 10 success/failure)
® The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

- 2 s _ [Pl —p1) | P(l—p2)
SEp—p, = SEf,l + SEf,2 = \/ m 4F .

® |mportantly, we know the distribution is Normal and we have the standard error

® \We can use gnorm to find critical values for confidence intervals and pnorm to compute
P-values for hypothesis tests
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Partisanship

OCTOBER 10, 2019
Partisan Antipathy: More
Intense’ More Personal W Republicans say Democrats are more ...

W Democrats say Republicans are more ...

The share of Republicans who give Democrats a

"cold" rating on a 0-100 thermometer has risen 14 Closed-minded -

Democrats give Republicans a very cold rating, up Immoral

from 2016.

Unpatriotic

|64 |
percentage points since 2016. Similarly, 57% of
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Partisanship

OCTOBER 10, 2019
Partisan Antipathy: More
Intense’ More Personal W Republicans say Democrats are more ...

W Democrats say Republicans are more ...

e other|

The share of Republicans who give Democrats a

"cold" rating on a 0-100 thermometer has risen 14 Closed-minded
percentage points since 2016. Similarly, 57% of
Democrats give Republicans a very cold rating, up Immoral
from 2016.
Unpatriotic

® \Was there really a difference in the proportion of Democrats that view Republicans as
close-minded compared to Republicans that view Democrats the same? Or is the
difference just due to random sampling?
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Confidence Intervals

Let's use the Normal approximation.
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Confidence Intervals

Let's use the Normal approximation.

Elsewhere in the study, we find the number of Republicans and Democrats surveyed were
4948 and 4947, respectively.

n_r<-4948

n_d<-4947

p_hat_r<-0.64
p_hat_d<-0.75
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Confidence Intervals

Let's use the Normal approximation.

Elsewhere in the study, we find the number of Republicans and Democrats surveyed were
4948 and 4947, respectively.

n_r<-4948

n_d<-4947

p_hat_r<-0.64
p_hat_d<-0.75

® Qur standard error is therefore 0.009
SE<-sqrt(p_hat_r*(1-p_hat_r)/n_r + p_hat_d*(1-p_hat_d)/n_d )
SE

## [1] 0.00919054
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Confidence Intervals

Let's use the Normal approximation.

Elsewhere in the study, we find the number of Republicans and Democrats surveyed were
4948 and 4947, respectively.

n_r<-4948

n_d<-4947

p_hat_r<-0.64
p_hat_d<-0.75

® Qur standard error is therefore 0.009
SE<-sqrt(p_hat_r*(1-p_hat_r)/n_r + p_hat_d*(1-p_hat_d)/n_d )
SE

## [1] 0.00919054

® At a 95% confidence level, the critical value is z* = 1.96
z<-gnorm(.975)
z

## [1] 1.959964
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Confidence Intervals Il

® Assembling these pieces, the confidence interval for p, — pq4 is

(ﬁr - f’d) +z" - SE
ci_low<-p_hat_r - p_hat_d - z*SE
ci_high<-p_hat_r - p_hat_d + z*SE

c(ci_low, ci_high)

## [1] -0.12801313 -0.09198687
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Confidence Intervals Il

® Assembling these pieces, the confidence interval for p, — pq4 is

(ﬁr - f’d) +z" - SE
ci_low<-p_hat_r - p_hat_d - z*SE
ci_high<-p_hat_r - p_hat_d + z*SE

c(ci_low, ci_high)

## [1] -0.12801313 -0.09198687

® Note that both endpoints of the interval are less than 0, suggesting that the true
difference in proportions between Republicans and Democrats is negative
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Confidence Intervals Il

® Assembling these pieces, the confidence interval for p, — pq4 is

(ﬁr - f’d) +z" - SE
ci_low<-p_hat_r - p_hat_d - z*SE
ci_high<-p_hat_r - p_hat_d + z*SE

c(ci_low, ci_high)

## [1] -0.12801313 -0.09198687

® Note that both endpoints of the interval are less than 0, suggesting that the true
difference in proportions between Republicans and Democrats is negative

® i.e. a greater proportion of Democrats hold the view that Republicans as closed-minded
compared to the converse
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Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.
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Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.

® We'll use the pew data set.
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Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.

® We'll use the pew data set.

pew %>}, group_by(party,close_minded) %>/
summarize(N = n()) %>%
mutate(prop = N / sum(N))

## # A tibble: 4 x 4
## # Groups: party [2]

##  party close_minded N prop
##  <fct> <fct> <int> <dbl>
## 1 Democrat no 1237 0.250
## 2 Democrat yes 3710 0.750
## 3 Republican no 1781 0.360
## 4 Republican yes 3167 0.640
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Confidence Interval via infer Il

boot<-pew %>/
specify(close_minded ~ party, success = "yes" ) %>V
generate(reps = 1000, type = "bootstrap" ) %>/
calculate( "diff in props", order = c("Republican", "Democrat") )
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Confidence Interval via infer Il

boot<-pew %>/
specify(close_minded ~ party, success = "yes" ) %>V
generate(reps = 1000, type = "bootstrap" ) %>/
calculate( "diff in props", order = c("Republican", "Democrat") )

interval <-boot 7>/ get_confidence_interval(level = .95, type = "se",
point_estimate = p_hat_r - p_hat_d)

interval

## # A tibble: 1 x 2

## lower_ci upper_ci
## <dbl> <dbl>
# 1 -0.128 -0.0920
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Confidence Interval via infer Il

boot<-pew %>/
specify(close_minded ~ party, success = "yes" ) %>
generate(reps = 1000, type = "bootstrap" ) %>%
calculate( "diff in props", order = c("Republican", "Democrat") )

interval <-boot 7>/ get_confidence_interval(level = .95, type = "se",
point_estimate = p_hat_r - p_hat_d)
interval

## # A tibble: 1 x 2

##  lower_ci upper_ci
## <dbl> <dbl>
# 1 -0.128 -0.0920

Simulation—-Based Bootstrap Distribution

150-
100-
i
o | II I-__

-0.13 -0.11 -0.09
stat

count
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Pooled sample for Hypothesis Tests

® Suppose we are interested in testing the following hypotheses

Ho : p1 = p2 Hs: p1 # p2
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Pooled sample for Hypothesis Tests

® Suppose we are interested in testing the following hypotheses

Ho : p1 = p2 Hs: p1 # p2

® |f the null hypothesis is true, collecting a sample of sizes n; and n2 from each
population is the same as collecting a single sample of size n; + n,.
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Pooled sample for Hypothesis Tests

® Suppose we are interested in testing the following hypotheses

Ho : p1 = p2 Hs: p1 # p2
® |f the null hypothesis is true, collecting a sample of sizes n; and n2 from each
population is the same as collecting a single sample of size n; + n,.
® So we may instead consider the pooled proportion p given by
overall successes nip1 + napo

b= overall sample size - ny + ny
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Pooled sample for Hypothesis Tests

® Suppose we are interested in testing the following hypotheses

Ho : p1 = p2 Hs: p1 # p2
® |f the null hypothesis is true, collecting a sample of sizes n; and n2 from each
population is the same as collecting a single sample of size n; + n,.
® So we may instead consider the pooled proportion p given by
overall successes nip1 + napo

b= overall sample size - ny + ny

® This gives a standard error for the null distribution of

o \/ﬁ(lf)) D!

m n
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Partisanship over Time

Increasing shares of partisans see members of the other party as ‘closed-minded’
and ‘immoral’

% who say members of the other party are a lot/somewhat more compared to other Americans
Closed-minded Immoral Lazy Unintelligent
70 75
64
55
52 a7 a7 46 46
35 32 36 33 38
T I I I I
'16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19
Among Among Among Among Among Among Among Among
Reps Dems Reps Dems Reps Dems Reps Dems

Note: Partisans do not include leaners.
Source: Survey of U.S. adults conducted Sept. 3-15, 2019.

PEW RESEARCH CENTER
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Partisanship over Time

Increasing shares of partisans see members of the other party as ‘closed-minded’
and ‘immoral’

% who say members of the other party are a lot/somewhat more compared to other Americans
Closed-minded Immoral Lazy Unintelligent
70 75
64
55
52 a7 a7 46 46
35 32 36 33 38
T II
'16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19 '16 '19
Among Among Among Among Among Among Among Among
Reps Dems Reps Dems Reps Dems Reps Dems

Note: Partisans do not include leaners.
Source: Survey of U.S. adults conducted Sept. 3-15, 2019.

PEW RESEARCH CENTER

® Was there really a change in the proportion of Democrats that view Republicans as
close-minded between 2016 and 20197

Nate Wells
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Hypothesis Tests

We test
Ho : p16 = p1o H. : pis # p1o
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Hypothesis Tests

We test
Ho : p16 = p1o H. : pis # p1o

® |et's use the Normal approximation. In 2016, the number of participants was 4948
and in 2019, the number was 2947. This gives a pooled proportion of p = 0.725
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Hypothesis Tests

We test
Ho : p16 = p1o H. : pis # p1o

® |et's use the Normal approximation. In 2016, the number of participants was 4948
and in 2019, the number was 2947. This gives a pooled proportion of p = 0.725

n_16<-4948
n_19<-4947

p_hat_16<-.7
p_hat_19<-.75

p_hat<-(p_hat_16#n_16 + p_hat_19*n_19)/(n_16 + n_19)

p_hat

## [1] 0.7249975

Nate Wells Inference for a 1 and 2 Proportions



Difference in Proportions
0000000000 0e000

Hypothesis Tests

We test
Ho : p16 = p1o H. : pis # p1o

® |et's use the Normal approximation. In 2016, the number of participants was 4948
and in 2019, the number was 2947. This gives a pooled proportion of p = 0.725

n_16<-4948
n_19<-4947

p_hat_16<-.7
p_hat_19<-.75

p_hat<-(p_hat_16#n_16 + p_hat_19*n_19)/(n_16 + n_19)
p_hat

## [1] 0.7249975

® The standard error for the null distribution is 0.009

SE <- sqrt( p_hat*(1- p_hat)/n_16 + p_hat*(1- p_hat)/n_19 )
SE

## [1] 0.008977568
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Hypothesis Tests Il

® Our test statistic is . R
7= P16 — P19

SE —5.57

z <- (p_hat_16 - p_hat_19)/SE
z

## [1] -5.569437
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Hypothesis Tests Il

® Our test statistic is . R
7= P16 — P19

SE —5.57

z <- (p_hat_16 - p_hat_19)/SE
z

## [1] -5.569437

® The P-value for this statistic is 0.00000002
P_value<-2*pnorm(z,0 ,1)
P_value

## [1] 2.555634e-08
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Hypothesis Tests Il

® Our test statistic is . R
7= P16 — P19

SE —5.57

z <- (p_hat_16 - p_hat_19)/SE
z

## [1] -5.569437
® The P-value for this statistic is 0.00000002
P_value<-2*pnorm(z,0 ,1)
P_value
## [1] 2.555634e-08
® The test is significant at & = 0.01 and we reject the null hypothesis.
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Hypothesis Tests Il

® Our test statistic is . R
7= P16 — P19

SE —5.57

z <- (p_hat_16 - p_hat_19)/SE
z

## [1] -5.569437
® The P-value for this statistic is 0.00000002
P_value<-2*pnorm(z,0 ,1)
P_value
## [1] 2.555634e-08
® The test is significant at & = 0.01 and we reject the null hypothesis.

® |t is unlikely that the observed difference in proportions is due to chance, if the
popualtions truly had the same proportion.
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Hypothesis Test via infer

Let's now use the pew2 data
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Hypothesis Test via infer

Let's now use the pew2 data

pew2 %>% group_by(year,close_minded) %>/
summarize(N = n()) %>%
mutate(prop = N / sum(N))

## # A tibble: 4 x 4
## # Groups: year [2]

##  year close_minded N prop
#i# <fct> <fct> <int> <dbl>
## 1 2016 no 1484 0.300
## 2 2016 yes 3464 0.700
## 3 2019 no 1237 0.250
## 4 2019 yes 3710 0.750
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Hypothesis Tests via infer Il

nulldist<-pew2 %>
specify(close_minded ~ year, success = "yes" ) %>/
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute" ) %>
calculate( "diff in props", order = c("2016", "2019") )
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Hypothesis Tests via infer Il

nulldist<-pew2 %>
specify(close_minded ~ year, success = "yes" ) %>/
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute" ) %>
calculate( "diff in props", order = c("2016", "2019") )

p_value <-nulldist %>’ get_p_value(obs_stat = (p_hat_16 - p_hat_19),
direction = "both")

p_value

## # A tibble: 1 x 1

## p_value
## <dbl>
## 1 0
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Hypothesis Tests via infer Il

nulldist<-pew2 %>
specify(close_minded ~ year, success = "yes" ) %>/
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute" ) %>
calculate( "diff in props", order = c("2016", "2019") )

p_value <-nulldist %>’ get_p_value(obs_stat = (p_hat_16 - p_hat_19),
direction = "both")

p_value

## # A tibble: 1 x 1

## p_value
## <dbl>
## 1 0

Simulation-Based Null Distribution
200~

150~
3 100 -
3
_ _- -

0
-0.050 -0.025 0.000 0.025
stat
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