Chi-Squared Tests

Nate Wells

Math 141, 4/7/21

Outline

In this lecture, we will...

- Determine whether data follows a certain distribution
- Investigate the chi-squared distribution.
- Use the chi-squared statistic to determine whether two variables are independent

Section 1

The Chi-Squared Test for Goodness of Fit

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

• If the single variable has just 2 levels, we can consider the proportion p for one level

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions p₁ - p₂.

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions $p_1 p_2$.

What can we do if one or both the variables are categorical with more than 2 levels?

Suppose we are interested in whether the 6 colors of M&Ms appear with equal frequency. Data from 1 jumbo bag of 120 M&Ms is summarized in the graphic below:

• Note that Green M&Ms exceed by the expected count by 20%.

- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?

- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...

- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...
 - Would it really be unusual for 1 color to be over- or under-represented?

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

We want to test the following hypotheses:

$$H_0: p_r = \frac{1}{6} p_o = \frac{1}{6} p_y = \frac{1}{6} p_g = \frac{1}{6} p_b = \frac{1}{6} p_{br} = \frac{1}{6}$$
$$H_a: p_r \neq \frac{1}{6} p_o \neq \frac{1}{6} p_y \neq \frac{1}{6} p_g \neq \frac{1}{6} p_b \neq \frac{1}{6} p_{br} \neq \frac{1}{6}$$

Randomization

• Since we have theoretical values for each proportion, we can simulate samples

Randomization

• Since we have theoretical values for each proportion, we can simulate samples

##	#	A tibb]	le: 6 1	κ 8					
##		color	`1`	2	-3-	`4`	`5`	expected	observed
##		<chr></chr>							
##	1	Blue	22	10	22	13	18	20	22
##	2	Brown	15	25	17	17	24	20	17
##	3	Green	28	17	24	23	18	20	24
##	4	Orange	19	21	23	29	26	20	22
##	5	Red	19	20	23	19	13	20	18
##	6	Yellow	17	27	11	19	21	20	17

Randomization

• Since we have theoretical values for each proportion, we can simulate samples

##	#	A tibbl	le: 6 1	κ 8					
##		color	`1`	`2`	-3-	`4`	`5`	expected	observed
##		<chr></chr>							
##	1	Blue	22	10	22	13	18	20	22
##	2	Brown	15	25	17	17	24	20	17
##	3	Green	28	17	24	23	18	20	24
##	4	Orange	19	21	23	29	26	20	22
##	5	Red	19	20	23	19	13	20	18
##	6	Yellow	17	27	11	19	21	20	17

• How does the observed data compare?

• Rather than looking at difference for a single level, we might look at total difference \sum (Observed – Expected)

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |Observed Expected|$

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |Observed Expected|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum (\text{Observed} - \text{Expected})^2$$

• But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\text{Observed}-\text{Expected})^2}{\text{st dev}}$

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |Observed Expected|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum (\text{Observed} - \text{Expected})^2$$

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\text{Observed}-\text{Expected})^2}{\text{st dev}}$
 - The standard deviation for squared differences is approximately Expected

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |Observed Expected|$
- Since we want one large difference to be more influential than many small differences, we look at the **squared differences**

$$\sum (\text{Observed} - \text{Expected})^2$$

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\text{Observed}-\text{Expected})^2}{\text{st dev}}$
 - The standard deviation for squared differences is approximately Expected
- This gives a statistic

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |Observed Expected|$
- Since we want one large difference to be more influential than many small differences, we look at the **squared differences**

$$\sum (\text{Observed} - \text{Expected})^2$$

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\text{Observed}-\text{Expected})^2}{\text{st dev}}$
 - The standard deviation for squared differences is approximately Expected
- This gives a statistic

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$

• Then large values of χ^2 should correspond to extreme samples

Nate Wells

• What is the χ^2 statistic for our observed sample?

$$\chi^{2} = \frac{(22-20)^{2}}{20} + \frac{(17-20)^{2}}{20} + \frac{(24-20)^{2}}{20} + \frac{(22-20)^{2}}{20} + \frac{(18-20)^{2}}{20} + \frac{(17-20)^{2}}{20} = 2.3$$

• What is the χ^2 statistic for our observed sample?

$$\chi^{2} = \frac{(22-20)^{2}}{20} + \frac{(17-20)^{2}}{20} + \frac{(24-20)^{2}}{20} + \frac{(22-20)^{2}}{20} + \frac{(18-20)^{2}}{20} + \frac{(17-20)^{2}}{20} = 2.3$$

• But what counts as *large*?

• What is the χ^2 statistic for our observed sample?

$$\chi^{2} = \frac{(22-20)^{2}}{20} + \frac{(17-20)^{2}}{20} + \frac{(24-20)^{2}}{20} + \frac{(22-20)^{2}}{20} + \frac{(18-20)^{2}}{20} + \frac{(17-20)^{2}}{20} = 2.3$$

• But what counts as *large*?

- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

```
## # A tibble: 5 x 2
## r chi2
## <int> <dbl>
## 1 1 5.2
## 2 2 9.2
## 3 3 6.4
## 4 7.5
## 5 5 5.5
```

• What is the χ^2 statistic for our observed sample?

$$\chi^{2} = \frac{(22-20)^{2}}{20} + \frac{(17-20)^{2}}{20} + \frac{(24-20)^{2}}{20} + \frac{(22-20)^{2}}{20} + \frac{(18-20)^{2}}{20} + \frac{(17-20)^{2}}{20} = 2.3$$

• But what counts as *large*?

- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical
- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

```
## # A tibble: 5 x 2
## r chi2
## <int> <dbl>
## 1 1 5.2
## 2 2 9.2
## 3 3 6.4
## 4 4 7.5
## 5 5 5.5
```

• So our statistic is much smaller than the statistics for these 5 samples.

• What is the χ^2 statistic for our observed sample?

$$\chi^{2} = \frac{(22-20)^{2}}{20} + \frac{(17-20)^{2}}{20} + \frac{(24-20)^{2}}{20} + \frac{(22-20)^{2}}{20} + \frac{(18-20)^{2}}{20} + \frac{(17-20)^{2}}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

```
## # A tibble: 5 x 2
## r chi2
## <int> <dbl>
## 1 1 5.2
## 2 2 9.2
## 3 6.4
## 4 4 7.5
## 5 5 5.5
```

- So our statistic is much smaller than the statistics for these 5 samples.
 - But is this a fluke?

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

Simulation-Based Null Distribution

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

• For this data, it seems that statistics between 0 and 8 are typical.

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

Simulation-Based Null Distribution

- For this data, it seems that statistics between 0 and 8 are typical.
 - Almost no statistic is greater than 15. And NONE are greater than 20.

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

Simulation-Based Null Distribution

- For this data, it seems that statistics between 0 and 8 are typical.
 - Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2=2.3$ is very moderate

- Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

• For this data, it seems that statistics between 0 and 8 are typical.

- Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2 = 2.3$ is very moderate
 - A statistic more extreme would occur about 80% of the time!

Using infer

• How do we find the probability that a particular χ^2 value would occur?

Using infer

- How do we find the probability that a particular χ^2 value would occur?
 - Use infer!

Using infer

• How do we find the probability that a particular χ^2 value would occur?

```
## 1 0.813
```

$$H_{0}:p_{r} = \frac{1}{6}p_{o} = \frac{1}{6}p_{y} = \frac{1}{6}p_{g} = \frac{1}{6}p_{b} = \frac{1}{6}p_{br} = \frac{1}{6}$$
$$H_{a}:p_{r} \neq \frac{1}{6}p_{o} \neq \frac{1}{6}p_{y} \neq \frac{1}{6}p_{g} \neq \frac{1}{6}p_{b} \neq \frac{1}{6}p_{br} \neq \frac{1}{6}$$

• We tested the following hypotheses:

$$H_{0}:p_{r} = \frac{1}{6} p_{o} = \frac{1}{6} p_{y} = \frac{1}{6} p_{g} = \frac{1}{6} p_{b} = \frac{1}{6} p_{br} = \frac{1}{6}$$
$$H_{a}:p_{r} \neq \frac{1}{6} p_{o} \neq \frac{1}{6} p_{y} \neq \frac{1}{6} p_{g} \neq \frac{1}{6} p_{b} \neq \frac{1}{6} p_{br} \neq \frac{1}{6}$$

• Our observed statistic $\chi^2=$ 2.3 had a simulated p-value of approximately 0.8

$$H_{0}:p_{r} = \frac{1}{6} p_{o} = \frac{1}{6} p_{y} = \frac{1}{6} p_{g} = \frac{1}{6} p_{b} = \frac{1}{6} p_{br} = \frac{1}{6}$$
$$H_{a}:p_{r} \neq \frac{1}{6} p_{o} \neq \frac{1}{6} p_{y} \neq \frac{1}{6} p_{g} \neq \frac{1}{6} p_{b} \neq \frac{1}{6} p_{br} \neq \frac{1}{6}$$

- Our observed statistic $\chi^2 = 2.3$ had a simulated p-value of approximately 0.8
- We do not reject H_0 at the $\alpha = 0.05$ significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.

$$H_{0}:p_{r} = \frac{1}{6} p_{o} = \frac{1}{6} p_{y} = \frac{1}{6} p_{g} = \frac{1}{6} p_{b} = \frac{1}{6} p_{br} = \frac{1}{6}$$
$$H_{a}:p_{r} \neq \frac{1}{6} p_{o} \neq \frac{1}{6} p_{y} \neq \frac{1}{6} p_{g} \neq \frac{1}{6} p_{b} \neq \frac{1}{6} p_{br} \neq \frac{1}{6}$$

- Our observed statistic $\chi^2=$ 2.3 had a simulated p-value of approximately 0.8
- We do not reject H_0 at the $\alpha = 0.05$ significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.

$$H_{0}:p_{r} = \frac{1}{6} p_{o} = \frac{1}{6} p_{y} = \frac{1}{6} p_{g} = \frac{1}{6} p_{b} = \frac{1}{6} p_{br} = \frac{1}{6}$$
$$H_{a}:p_{r} \neq \frac{1}{6} p_{o} \neq \frac{1}{6} p_{y} \neq \frac{1}{6} p_{g} \neq \frac{1}{6} p_{b} \neq \frac{1}{6} p_{br} \neq \frac{1}{6}$$

- Our observed statistic $\chi^2 = 2.3$ had a simulated p-value of approximately 0.8
- We do not reject H_0 at the $\alpha = 0.05$ significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.
 - Importantly, it does not verify that colors ARE equally distributed.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

• Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

• Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

• Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

• Use pchisq(q = ..., df = ..., lower.tail = F) to find the area right of the observed statistic q.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

• Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

• Use pchisq(q = ..., df = ..., lower.tail = F) to find the area right of the observed statistic q.

pchisq(q = 2.3, df = 5, lower.tail = F)

[1] 0.81

The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.

Chi-Squared Distributions

The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.

• Larger degrees of freedom correspond to larger means and larger standard deviations.

The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.

- Larger degrees of freedom correspond to larger means and larger standard deviations.
- For Chi-Squared tests, larger degrees of freedom require larger χ^2 statistic to reject H_0 .

Section 2

Chi-Square Test for Independence

Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

• Is there an association between a genotype classification (RR, RX, or XX) and group?

Math 141, 4/7/21 16/21

Contingency Table

Consider the contingency table for group and genotype

tabl ad	e(twitch\$gn dmargins()	coup,	twi	itch	genotype)	%>%	tabl pr	e(twitch\$g op.table(1	roup, † L)	twitch	genotype)	%>%
## ## ## ## ##	Control Endurance Sprint Sum	RR 130 60 53 243	RX 226 88 48 362	XX 80 46 6 132	Sum 436 194 107 737		## ## ## ##	Control Endurance Sprint	RR 0.298 0.309 0.495	RX 0.518 0.454 0.449	XX 0.183 0.237 0.056	

Contingency Table

Consider the contingency table for group and genotype

table ade	e(twitch\$gn dmargins()	coup,	, twi	itch	genotype)	%>%	tabl pr	e(twitch\$g op.table(1	roup, † L)	twitch	genotype) %>%
## ## ## ## ##	Control Endurance Sprint Sum	RR 130 60 53 243	RX 226 88 48 362	XX 80 46 6 132	Sum 436 194 107 737		## ## ## ##	Control Endurance Sprint	RR 0.298 0.309 0.495	RX 0.518 0.454 0.449	XX 0.183 0.237 0.056	

• If group and genotype were independent, we would expect proportions to all be equal to the marginal proportions for genotype:

table(twitch\$genotype) %>% prop.table()

RR RX XX ## 0.33 0.49 0.18

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX		RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)	Control	144	214	78
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)	Endurance	64	95	35
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)	Sprint	35	52	19

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX		RR	RX	ХХ
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)	Control	144	214	78
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)	Endurance	64	95	35
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)	Sprint	35	52	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Endurance	60	88	46	194
Sprint	53	48	6	107
Sum	243	362	132	737

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX		RR	RX	ХХ
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)	Control	144	214	78
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)	Endurance	64	95	35
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)	Sprint	35	52	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Endurance	60	88	46	194
Sprint	53	48	6	107
Sum	243	362	132	737

• As before, we compute the chi-square statistic

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} = 25$$

The Null Distribution

Under the null hypothesis, group and genotype are independent.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

##		ID	group	genotype	##		ID	group	genotype
##	1	1	Endurance	RX	##	1	1	Endurance	RX
##	2	2	Sprint	XX	##	2	2	Sprint	RX
##	З	3	Control	XX	##	3	3	Control	XX
##	4	4	Sprint	RX	##	4	4	Sprint	RR
##	5	5	Control	RX	##	5	5	Control	XX
##	6	6	Sprint	RR	##	6	6	Sprint	RX

Chi-Square Statistic in infer

Using infer...

The Chi-Squared Test for Goodness of Fit 000000000000 Chi-Square Test for Independence ○○○○○●○

Chi-Square Statistic in infer

```
Using infer...
set.seed(49)
twitch_null <- twitch %>%
   specify(genotype ~ group) %>%
   hypothesize(null = "independence") %>%
   generate(reps = 2000, type = "permute") %>%
   calculate(stat="Chisq")
twitch_null %>% visualize()+shade_p_value(obs_stat = 25, direction = "right")
```


Simulation-Based Null Distribution

```
Using infer, the approximate p-value is
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
```

```
## <dbl>
```

```
## 1 0.0005
```

```
Using infer, the approximate p-value is
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0005
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.

```
Using infer, the approximate p-value is
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
```

```
## <dbl>
```

```
## 1 0.0005
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?

```
Using infer, the approximate p-value is
```

twitch_null %>% get_p_value(obs_stat = 25, direction = "right")

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0005
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?
 - We'll need to further study and experiment to find out.