
The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Chi-Squared Tests

Nate Wells

Math 141, 4/7/21

Nate Wells Chi-Squared Tests Math 141, 4/7/21 1 / 21



The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Outline

In this lecture, we will. . .
• Determine whether data follows a certain distribution
• Investigate the chi-squared distribution.
• Use the chi-squared statistic to determine whether two variables are independent
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Section 1

The Chi-Squared Test for Goodness of Fit
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Inference for Categorical Variables

Suppose we want to investigate either 1 categorical variable or the relationship between 2
categorical variables.

• If the single variable has just 2 levels, we can consider the proportion p for one level
• If both response and explanatory variables have 2 levels, we can consider the
difference in proportions p1 − p2.

What can we do if one or both the variables are categorical with more than 2 levels?
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

M&Ms

Suppose we are interested in whether the 6 colors of M&Ms appear with equal frequency.
Data from 1 jumbo bag of 120 M&Ms is summarized in the graphic below:

0

5

10

15

20

25

Red Orange Yellow Green Blue Brown
color

co
un

t

color

Red

Orange

Yellow

Green

Blue

Brown

• Note that Green M&Ms exceed by the
expected count by 20%.

• Does this give good evidence that M&M
colors appear at different rates?

• Suppose we had 20 colors instead of 6. . .

• Would it really be unusual for 1 color to be
over- or under-represented?
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Data

Let’s consider some numeric data:
Color Red Orange Yellow Green Blue Brown

Frequency .15 .183 .142 .2 .183 .142
Counts 18 22 17 24 22 17

Expected Counts 20 20 20 20 20 20
Difference (Obs - Exp) -2 2 -3 4 2 -3

We want to test the following hypotheses:

H0 :pr = 1
6 po = 1

6 py = 1
6 pg = 1

6 pb = 1
6 pbr = 1

6

Ha :pr 6=
1
6 po 6=

1
6 py 6=

1
6 pg 6=

1
6 pb 6=

1
6 pbr 6=

1
6
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Randomization

• Since we have theoretical values for each proportion, we can simulate samples

## # A tibble: 6 x 8
## color `1` `2` `3` `4` `5` expected observed
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Blue 22 10 22 13 18 20 22
## 2 Brown 15 25 17 17 24 20 17
## 3 Green 28 17 24 23 18 20 24
## 4 Orange 19 21 23 29 26 20 22
## 5 Red 19 20 23 19 13 20 18
## 6 Yellow 17 27 11 19 21 20 17

• How does the observed data compare?
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

A Statistic

• Rather than looking at difference for a single level, we might look at total difference∑
(Observed− Expected)

• But since any negative difference in one location corresponds to a positive difference
elsewhere, we might instead consider total absolute differences∑
|Observed− Expected|

• Since we want one large difference to be more influential than many small differences,
we look at the squared differences∑

(Observed− Expected)2

• But we should also anticipate larger observations lead to larger total squared
differences, so we might normalize

∑ (Observed−Expected)2
st dev

• The standard deviation for squared differences is approximately Expected

• This gives a statistic

χ2 =
∑ (Observed− Expected)2

Expected
• Then large values of χ2 should correspond to extreme samples
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Observed Statistic

• What is the χ2 statistic for our observed sample?

χ2 = (22− 20)2

20 + (17− 20)2

20 + (24− 20)2

20 + (22− 20)2

20 + (18− 20)2

20 + (17− 20)2

20 = 2.3

• But what counts as large?
• Let’s compute the χ2 statistic for each of the previous 5 samples from the theoretical
population

## # A tibble: 5 x 2
## r chi2
## <int> <dbl>
## 1 1 5.2
## 2 2 9.2
## 3 3 6.4
## 4 4 7.5
## 5 5 5.5
• So our statistic is much smaller than the statistics for these 5 samples.

• But is this a fluke?
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Distribution of χ2 statistics

• Let’s calculate the χ2 statistic for several thousand other samples and plot the
distribution
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Simulation−Based Null Distribution

• For this data, it seems that statistics between 0 and 8 are typical.
• Almost no statistic is greater than 15. And NONE are greater than 20.

• Our observed statistic of χ2 = 2.3 is very moderate
• A statistic more extreme would occur about 80% of the time!
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Using infer

• How do we find the probability that a particular χ2 value would occur?

• Use infer!
set.seed(1)

chisq_null <- MMs %>%
specify(response = color) %>%
hypothesize(null = "point",

p = c("Red" = 1/6, "Orange" = 1/6, "Yellow" = 1/6,
"Green" = 1/6, "Blue" = 1/6, "Brown" = 1/6)) %>%

generate(reps = 5000, type = "simulate") %>%
calculate(stat = "Chisq")

chisq_null %>% get_p_value(obs_stat =2.3, direction = "right")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.813
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Conclusions

• We tested the following hypotheses:

H0 :pr = 1
6 po = 1

6 py = 1
6 pg = 1

6 pb = 1
6 pbr = 1

6

Ha :pr 6=
1
6 po 6=

1
6 py 6=

1
6 pg 6=

1
6 pb 6=

1
6 pbr 6=

1
6

• Our observed statistic χ2 = 2.3 had a simulated p-value of approximately 0.8
• We do not reject H0 at the α = 0.05 significance level (or at any reasonable level)

• It is likely that such a difference in counts would arise due to chance, if the null
hypothesis were true.

• The test provides inconclusive evidence that frequency differs among colors.
• Importantly, it does not verify that colors ARE equally distributed.
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Theory-based p-values for χ2 statistics

If we have independent observations on a categorical variable with k levels, and each
observed count is at least 5,

• Then χ2 is approximately the Chi-Squared distribution with k − 1 degrees of freedom.
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Simulated Distribution vs. Theoretical Distribution

• Use pchisq(q = ..., df = ..., lower.tail = F) to find the area right of the
observed statistic q.

pchisq(q = 2.3, df = 5, lower.tail = F)

## [1] 0.81
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

The Chi-Squared Distribution

Just Normal distributions are described by their mean µ and standard deviation σ, the
Chi-Square distribution is described by its degrees of freedom df .
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H0.
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Section 2

Chi-Square Test for Independence
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance
athletes, and a control group of non-athletes.

• Is there an association between a genotype classification (RR, RX, or XX) and group?
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Contingency Table

Consider the contingency table for group and genotype

table(twitch$group, twitch$genotype) %>%
addmargins()

##
## RR RX XX Sum
## Control 130 226 80 436
## Endurance 60 88 46 194
## Sprint 53 48 6 107
## Sum 243 362 132 737

table(twitch$group, twitch$genotype) %>%
prop.table( 1)

##
## RR RX XX
## Control 0.298 0.518 0.183
## Endurance 0.309 0.454 0.237
## Sprint 0.495 0.449 0.056

• If group and genotype were independent, we would expect proportions to all be equal to the
marginal proportions for genotype:

table(twitch$genotype) %>% prop.table()

##
## RR RX XX
## 0.33 0.49 0.18
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Expected Counts

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the
observed counts for group to get expected counts for each genotype-group pair:

RR RX XX
Control (0.33)(436) (0.49)(436) (0.18)(436)

Endurance (0.33)(194) (0.49)(194) (0.18)(194)
Sprint (0.33)(107) (0.49)(107) (0.18)(107)

RR RX XX
Control 144 214 78

Endurance 64 95 35
Sprint 35 52 19

• We can compare to the observed data:

RR RX XX Sum

Control 130 226 80 436
Endurance 60 88 46 194
Sprint 53 48 6 107
Sum 243 362 132 737

• As before, we compute the chi-square statistic

χ2 =
∑ (Observed− Expected)2

Expected = 25
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

The Null Distribution

Under the null hypothesis, group and genotype are independent.

• We can simulate data under H0 by permuting the group labels among individuals.
(Just like we did for hypothesis tests for 2 proportions)

• After each permutation, we compute a new χ2 statistic.
• The distribution of these statistics gives the null distribution.

## ID group genotype
## 1 1 Endurance RX
## 2 2 Sprint XX
## 3 3 Control XX
## 4 4 Sprint RX
## 5 5 Control RX
## 6 6 Sprint RR

## ID group genotype
## 1 1 Endurance RX
## 2 2 Sprint RX
## 3 3 Control XX
## 4 4 Sprint RR
## 5 5 Control XX
## 6 6 Sprint RX
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

Chi-Square Statistic in infer

Using infer. . .

set.seed(49)
twitch_null <- twitch %>%

specify(genotype ~ group) %>%
hypothesize(null = "independence") %>%
generate(reps = 2000, type = "permute") %>%
calculate(stat="Chisq")

twitch_null %>% visualize()+shade_p_value(obs_stat = 25, direction = "right")
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The Chi-Squared Test for Goodness of Fit Chi-Square Test for Independence

P-value and conclusions

Using infer, the approximate p-value is
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0005

• At significance α = 0.01, we reject H0 in favor the alternative:
• This sample gives good evidence that group and genotype are associated.

• What association is there?
• We’ll need to further study and experiment to find out.
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