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In this lecture, we will. ..
® |nvestigate the linear model
® Discuss predictions and residuals

® Explore a formula for finding the line of best fit
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Relationships for Quantitative Variables

® Quantitative variables, by nature, are amenable to algebraic manipulation.

® Given two quantitative variables X and Y, we construct a mathematical model that
expresses the values of Y as a function of the values of X:

Y = f(X)

® Linear functions are the simplest of all mathematical functions, and so are the starting
place for modeling

Y = 6o+ 51X with (o, /1 fixed constants

® Of course, in the wild, the observed values of Y will not be perfectly predicted by the
values of X.

Y =0+/X+e¢€ where € is the error
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (X, Y;) has iAts own residual e;, which is the difference between the
observed (Y;) and predicted (Y;) value:

e=Y -V
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (X;, Y;) has its own residual e;, which is the difference between the

observed (Y;) and predicted (Y;) value:
=Y - Y

State-by-State Graduation and Poverty Rates, with Residual Heights

High School Graduation Rate, Y

14
Poverty Rate, X

® Oregon'’s residual is
e=Y—-Y=80-844=-44
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:
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® Points preserve original x-position, but with y-position equal to residual.
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Quantifying Goodness-of-Fit
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® The Correlation Coefficient R describes the strength of a linear relationship between
two quantitative variables, and is always a number between —1 and 1.
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0.3 and .07 moderate
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Correlation Coefficient

® The Correlation Coefficient R describes the strength of a linear relationship between
two quantitative variables, and is always a number between —1 and 1.

® The sign of R indicates the direction of relationship, while the magnitude of R
indicates the strength.

If |R| is between... | Then the linear relationship is...
0.7and 1 strong
0.3 and .07 moderate
0 and 0.3 weak
,
) R g /
(Y L3 » :
. y\‘i * * 4
8 yd
R=033 R =0.69 R=098 R =100
L] - -
a ) ~
. Ty “
MRS “%‘
R =-0.08 R = -0.64 R=-092 R =-1.00
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Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:

Nate Wells Linear Models



Quantifying Goodness-of-Fit
[e]e] le]e]

Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:

- n—1Z<XI_X) (y;;?)

Nate Wells Linear Models



Quantifying Goodness-of-Fit
[e]e] le]e]

Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:
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® Suppose that when X is above its mean, then Y also tends to be above its mean.
And similarly, when X is below its mean, then Y is also.
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Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:
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® Suppose that when X is above its mean, then Y also tends to be above its mean.
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Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:

e (5 (457

® Suppose that when X is above its mean, then Y also tends to be above its mean.
And similarly, when X is below its mean, then Y is also.

® What will the scatterplot of X and Y look like?
® Based on the formula, is correlation
positive or negative?

A R =3 "(Pos.)(Pos.) + > (Neg.)(Neg.)

Nate Wells Linear Models



Quantifying Goodness-of-Fit
[e]e] le]e]

Mathematical Definition of Correlation

® The Correlation Coefficient is defined via formula using the means (x, ¥) and
standard deviations (s, s,) of the variables X and Y:

e (5 (457

® Suppose that when X is above its mean, then Y also tends to be above its mean.
And similarly, when X is below its mean, then Y is also.

® What will the scatterplot of X and Y look like?
® Based on the formula, is correlation

. 1 1 positive or negative?
. . .f . ';,; . o R =3 "(Pos.)(Pos.) + > (Neg.)(Neg.)
.7 R R .
Ao T R = 0.6995848
T I

Math 141,
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Correlation is not Association

® Correlation measures strength of LINEAR relationship:
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Correlation is not Association

® Correlation measures strength of LINEAR relationship:

® Which of the following has the strongest correlation (largest value of |R|)?

(© (d)

® Answer: (b), not (a)
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Correlation isn't the Whole Story

® Computing a correlation coefficient is no substitute for data visualization.
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® Computing a correlation coefficient is no substitute for data visualization.

® All of the following have identical, strong positive correlation (R = 0.82):
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Correlation isn't the Whole Story

® Computing a correlation coefficient is no substitute for data visualization.

® All of the following have identical, strong positive correlation (R = 0.82):

| 1 n %

50- .

## I II 1III v
## Correlation 0.82 0.82 0.82 0.82

® However, each graphic tells a radically different story about the relationship between
the variables.
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Section 3

Fitting a Line by Least-Squares Regression

Nate Wells Linear Models Math 141, 2/16,



Fitting a Line by Least-Squares Regression
0®00000000

Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values

le] + e2| + -+ + [en]
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + |e2| + -+ + |en]
® Option 2: Minimize the sum of squares

2., 2 2
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
et e+ e

® Option 2 is usually preferred.
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
eft+e+-te
® Option 2 is usually preferred.

@ Most commonly used.
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
eft+e+-te
® Option 2 is usually preferred.

@ Most commonly used.

® More computationally efficient.
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
et e+ e
® Option 2 is usually preferred.
@ Most commonly used.

® More computationally efficient.

© Has theoretical advantages (by analogy with distance and pythagorean thm.)
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Fitting a Line by Least-Squares Regression
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
eft+e+-te
® Option 2 is usually preferred.
@ Most commonly used.
® More computationally efficient.
© Has theoretical advantages (by analogy with distance and pythagorean thm.)

O Appropriately weights one large residuals as “worse” than many small ones.
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Measure for BEST Line

® The line of best fit to a scatterplot should minimize residuals, meaning:
® Option 1: Minimizing the sum of absolute values
ler] + leal + - + len]
® Option 2: Minimize the sum of squares
eft+e+-te
® Option 2 is usually preferred.
@ Most commonly used.
® More computationally efficient.
© Has theoretical advantages (by analogy with distance and pythagorean thm.)
O Appropriately weights one large residuals as “worse” than many small ones.

©® Has well-understood properties for inference
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Line of Best Fit

® For the three data points below, consider candidates for the line of best fit:

20+ .
1.5-
> 1.0 °
0.5-
00+ .
00 05 10 15 20
X

Goal: minimize e% + e% + e§
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Line of Best Fit

® For the three data points below, consider candidates for the line of best fit:

2.0+ °

! 1

| 1

! 1

! 1

| 1

154 | !

! 1

1 1

I 1

! 1

I 1

> 1.0 ¢
0.5+
0.0+
00 05 10 15 20
X

Purple line : ef+e§+e§:12+02+12:2

Nate Wells Linear Models



Fitting a Line by Least-Squares Regression
0000e00000

Line of Best Fit

® For the three data points below, consider candidates for the line of best fit:

2.0- *
1
1
1
1
1
1
1.5+ !
1
1
1
1
1
>1.0
1
1
1
1
1
]
0.5- !
1
1
1
1
1
0.0
00 05 10 15 20
X

Maroon line : ef+e§+e§:02+12+12:2
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Line of Best Fit

® For the three data points below, consider candidates for the line of best fit:

2.0 ]

1

1

1

1

1

1

1.5+ t

! 1

! 1

I 1

1 1

1 1

> 1.0 ¢
0.5+ 1
1
1
1
1
1
0.0
00 05 10 15 20
X

Blue line: e+ e5+e5 =05+12+052=15

Nate Wells Linear Models



Fitting a Line by Least-Squares Regression
000000e000

A Formula for the Least Squares Regression Line

® Suppose n observations for variables X and Y are collected:

(X17.y1)7 (X27.y2)7 MR (X’H.y")
with means X, y, standard deviations sy, s,, and correlation R.
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A Formula for the Least Squares Regression Line

® Suppose n observations for variables X and Y are collected:

(X17.y1)7 (X27.y2)7 MR (X’H.y")
with means X, y, standard deviations sy, s,, and correlation R.

® The Least Squares Regression Line modeling Y as a function of X is

Y = B0+ /X
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A Formula for the Least Squares Regression Line

® Suppose n observations for variables X and Y are collected:

(X17.y1)7 (X27.y2)7 MR (X’H.y")
with means X, y, standard deviations sy, s,, and correlation R.

® The Least Squares Regression Line modeling Y as a function of X is

Y = B0+ /X

where the slope 1 is given by
B =R
Sx
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A Formula for the Least Squares Regression Line

® Suppose n observations for variables X and Y are collected:

(X17.y1)7 (X27.y2)7 MR (X’H.y")
with means X, y, standard deviations sy, s,, and correlation R.

® The Least Squares Regression Line modeling Y as a function of X is

Y = B0+ /X

where the slope 1 is given by
B=2R

Sx

and where the intercept is given by

Bo=y— Pk
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Properties of the Least-Squares Regression line

® The least squares line is
A S
Y=B+BX PBP=2R fo=y-px

Sx
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Properties of the Least-Squares Regression line

® The least squares line is
A S
Y=B+BX PBP=2R fo=y-px

Sx

® The line always goes through the point (x,¥)
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Properties of the Least-Squares Regression line

® The least squares line is

V=3+/X Bi=2R Bi=y-px

Sx

® The line always goes through the point (x,¥)

100

## mean_x mean_y
## 1 2.108887 5.179967
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Properties of the Least-Squares Regression line

® The least squares line is

V=8+8X Bi=ZR [o=y—piX
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Properties of the Least-Squares Regression line

® The least squares line is
N S
Y =B+ p1X pr==2R Bo =y — pix

Sx

® The slope has the same sign as the correlation coefficient
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Properties of the Least-Squares Regression line

® The least squares line is
N S
Y =B+ p1X pr==2R Bo =y — pix

Sx

® The slope has the same sign as the correlation coefficient

15

10

. e R=-088

Slope = -2

Slope =3

-4 . -101 @ A4
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Properties of the Least-Squares Regression line

® The least squares line is

. s _ _
Y = B0+ /X ﬁl=sfyR Bo =y — pix
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Properties of the Least-Squares Regression line

® The least squares line is
N s _ -
Y=B+BX PpP=2R fo=y-pHx

Sx

® The slope is close to 0 when either R =~ 0 or when sy is much bigger than s,
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Properties of the Least-Squares Regression line

® The least squares line is

V=06o+ X Bi=2R o=y Bix

® The slope is close to 0 when either R =~ 0 or when sy is much bigger than s,

R=0 s_x bigger than s_y
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