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Outline

In this lecture, we will. . .

• Discuss accuracy and appropriateness of linear models
• Work through an example of linear regression
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Assessing Accuracy of Linear Models

Nate Wells Linear Models Math 141, 2/18/22 3 / 28



Assessing Accuracy of Linear Models Linear Regression in Practice

Review: The Least Squares Regression Line

• Suppose n observations for variables X and Y are collected:

(x1, y1), (x2, y2), . . . , (xn, yn)
with means x̄ , ȳ , standard deviations sx , sy , and correlation R.

• The Least Squares Regression Line modeling Y as a function of X is

Ŷ = β0 + β1X

where the slope β1 is given by
β1 = sy

sx
R

and where the intercept is given by

β0 = ȳ − β1x̄
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Properties of the Least-Squares Regression line

• The least squares line is

Ŷ = β0 + β1X β1 =
sy

sx
R β0 = ȳ − β1x̄

• The least squares line minimizes the sum of squared residuals e21 + e22 + · · · + e2n .
• The line always goes through the point (x̄ , ȳ)
• The slope has the same sign as the correlation coefficient
• The slope is close to 0 when either R ≈ 0 or when sx is much bigger than sy

• A large slope does not indicate strong correlation and a small slope does not indicate
lack of correlation
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• The slope has the same sign as the correlation coefficient
• The slope is close to 0 when either R ≈ 0 or when sx is much bigger than sy

• A large slope does not indicate strong correlation and a small slope does not indicate
lack of correlation

Nate Wells Linear Models Math 141, 2/18/22 5 / 28



Assessing Accuracy of Linear Models Linear Regression in Practice

Properties of the Least-Squares Regression line

• The least squares line is
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Goals for Regression

Least squared regression is used for 3 primary tasks:

1 Exploring and summarizing relationships between quantitative variables in a data set.
• EX: In 2020, we observe that countries with higher GDP per capita consistently have

higher average life expectancy.

2 Predicting values of the response variable based on values of the explanatory variable
• EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410

ppm CO2 in 2025.

3 Inferring relationships about a population based on relationships observed in a sample.
• EX: Based on the negative correlation between poverty and graduation rate observed in

the sample of states in 2020, we infer that in general, a state’s poverty and graduation
rate are negatively correlated.

• We can always find the line of best fit to explore data.
• However, if we want to make accurate predictions or justified inference, we need to
ensure certain conditions are satisfied.
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:

1 The relationship between explanatory and response variables must be approximately
linear. (Linear)

• Check using scatterplot/residual plot

2 The observations should be independent of one another. (Independence)
• Check using scatterplot/residual plot, as well as sample design

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

• Check using histogram of residuals

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

• Check using residual plot.
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Linearity

1 The relationship between explanatory and response variables must be approximately
linear.
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• If data is non-linear. . .
• Slope does not adequately describe relationship
• Predictions can be very inaccurate
• More advanced modeling techniques should be used (Math 243)
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Independent Observations

2 The observations should be independent of one another.
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• If observations are not independent. . .
• Coincidental trends more likely to appear
• Slope and intercept estimates are more variable in sample
• More advanced modeling techniques should be used (Math 243)
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Normal Residuals

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0.
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• If residuals are non-Normal. . .
• Cannot estimate trends in population
• Some predictions can be very inaccurate
• More advanced modeling techniques should be used (Math 243)
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Equal Variability

4 The variability of residuals should be roughly constant across entire data set.
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• If residuals don’t have equal variability. . .
• Inference about the population may be misleading
• Outliers in high-variability range are more influential
• More advanced modeling techniques should be used (Math 243)
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Outliers

• An outlier in regression is an observation that lies far from the cloud of data points.
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• Outliers can arise for a variety of reasons. . .

• Measurement, recording, or reporting error
• Evidence of possible confounding variable
• Random chance in sampling
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Effect of Outliers on Least Squares

• The least squares line is not robust against outliers
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• Outliers that have both extreme y values and extreme x values have the potential to
significantly change slope and intercept of regression line

• But unless you have very good reason to, do not remove outliers (they tell an
important story about the data)
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Coefficient of Variation

• The correlation coefficient R measures the strength and direction of a linear
relationship.

• But another common measure of the strength of a linear relationship is the
coefficient of variation R2 (sometimes just called “R-squared”)

• Since R is a number between −1 and 1, then R2 will always be between 0 and 1.

• The value of R2 measures the proportion of variation in the response variable Y that
is explained by its linear relationship with the explanatory variable X .

• R2 can also be computed as

R2 = Variability in Y explained by X
Variability in Y =

s2y − s2res

s2y
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• R2 can also be computed as

R2 = Variability in Y explained by X
Variability in Y =

s2y − s2res

s2y
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Values of Rˆ2

If R2 ≈ 1: nearly all the variability in response is due to variability in the explanatory
variable.

R = 0.97

R2 = 0.94
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Values of R2

If R2 ≈ 0: almost none of the variability in response is due to variability in the explanatory
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Section 2

Linear Regression in Practice
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Review of Regression in R

1 State research question and identify variables

2 Load data
• the_data <- read_csv("example.csv")

3 Perform exploratory data analysis (using dplyr and ggplot)
• ggplot(the_data, aes(x = var1, y = var2) ) + geom_point()

4 Compute correlation and R2 for pair of variables
• the_data %>% summarize(cor = cor(var1, var2)) %>% mutate(R_sq = corˆ2)

5 Fit a linear model to the data
• nice_model<- lm(var2 ~ var1, data = the_data)

6 Get equation of regression line from regression table
• get_regression_table(nice_model)

7 Plot regression line
• ggplot( ... ) + geom_point() + geom_smooth(method = "lm", se = F)

8 Calculate residuals and create residual plot
• model_residuals <- get_regression_points(nice_model)
• ggplot(model_residuals, aes(x = var1, y = residual) ) + geom_point() +

geom_smooth(method = "lm", se = F)

9 Assess model conditions and investigate outliers.
10 Make conclusions.
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Poverty and Graduation Rate

• Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

• Explanatory Variable: Poverty Rate
• Response Variable: Graduation Rate
• Population: The contemporary United States
• Sample: US States (2018 - 2020)

• Research Method: Build a linear model for graduation rate as a function of poverty
rate, using individual states as observations.

• Data: We’ve obtained data called states on poverty rate from the 2020 US Census,
and data on graduation rate from a 2018-2019 report by NCES

• grad_rate denotes the adjusted cohort graduation rate (percent of high school
freshmen who finish with regular diploma within 4 years of starting 9th grade)

• poverty denotes the proportion of state population living below poverty threshold
(26,246 per person, for family of 4 with two children)
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Exploratory Analysis

• Visualize Relationship using ggplot2
ggplot(states, aes(y = grad_rate, x = poverty)) +
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Poverty and Graduation Rate in the US")+
theme_bw()
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Poverty and Graduation Rate in the US

• Compute relevant summary statistics
using dplyr

states %>% summarize(
mean_poverty = mean(poverty),
sd_poverty = sd(poverty),
mean_grad = mean(grad_rate),
sd_grad = sd(grad_rate))

## # A tibble: 1 x 4
## mean_poverty sd_poverty mean_grad sd_grad
## <dbl> <dbl> <dbl> <dbl>
## 1 13.5 3.02 85.2 4.48
states %>% summarize(
R = cor(grad_rate, poverty)) %>%
mutate(R_sq = Rˆ2)

## # A tibble: 1 x 2
## R R_sq
## <dbl> <dbl>
## 1 -0.241 0.0582
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Fit the Linear Model

• Fit the linear modeling using lm
states_mod <- lm(grad_rate ~ poverty, data = states)

• Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8
## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055

• Express the coefficients in terms of a linear function
Grad Rate = 90.1 − 0.358 · Poverty

• Interpret the coefficients
• Every 1 unit increase in poverty corresponds to a .358 unit decrease in graduation rate.
• The predicted graduation rate for a state with 0 poverty is 90.062
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• Every 1 unit increase in poverty corresponds to a .358 unit decrease in graduation rate.

• The predicted graduation rate for a state with 0 poverty is 90.062
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Calculate Residuals

• Get residuals
state_residuals <- get_regression_points(states_mod)

ggplot(state_residuals,
aes(x = poverty, y = residual)) +

geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Residual Plot")+
theme_bw()
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ggplot(state_residuals,
aes(x = residual)) +

geom_histogram(bins = 10, color = "white")+
labs(title = "Histogram of Residuals")+
theme_bw()
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Assess Conditions for Linear Regression

1 Linearity?
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Residual Plot

• Scatterplot suggests a weak linear relationship between poverty and grad_rate, but
residual plot doesn’t show any strong non-linear trends
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Assess Conditions for Linear Regression

2 Independence?
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Poverty and Graduation Rate in the US

• States in close geographic proximity tend to have similar poverty and grad rates.
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Assess Conditions for Linear Regression

3 Normal residuals?
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• Residual distribution appears to be (mostly) symmetric, unimodal, and centered at 0.
Roughly bell-shaped. But with 1 notable outlier.
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Assess Conditions for Linear Regression

4 Equal Variability?
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Residual Plot

• Variability in outliers is relatively consistent across poverty range (with exception of
outlier)
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Investigate Outliers

• What’s up with DC?

states %>%
ggplot(aes(y = grad_rate, x = poverty)) +

geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "With DC")+theme_bw()+
scale_y_continuous(limits = c(65,95))
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With DC

states %>%
summarize(R = cor(poverty, grad_rate))

## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.241

states %>% filter(abbr!="DC") %>%
ggplot(aes(y = grad_rate, x = poverty)) +
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Without DC")+theme_bw()+
scale_y_continuous(limits = c(65,95))
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Without DC

states %>% filter(abbr != "DC") %>%
summarize(R = cor(poverty, grad_rate))

## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.142
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Conclusions

• What have we learned?

• Based on data from 2018 - 2020, there seems to be some evidence of a negative linear
relationship between poverty rate and graduation rate (R = −.24)

• However, an outlier (Washington D.C.) was influential in the model, and with this
outlier removed, the linear relationship was considerably weaker (R = −.14)

• Geo-politically similar states appear to have similar graduation and poverty rates, raising
concerns about independence of observations; variability of residuals in this sample may
not represent variability overall

• Further studies should be conducted to assess whether these trends (a) change over
time, and (b) are replicated at smaller scale.
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