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In this lecture, we will. . .
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In this lecture, we will. . .
® Discuss accuracy and appropriateness of linear models

® Work through an example of linear regression
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Assessing Accuracy of Linear Models
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Review: The Least Squares Regression Line

® Suppose n observations for variables X and Y are collected:

(X1>y1)7 (X2>y2)7 B (me")
with means X, y, standard deviations s,, s,, and correlation R.

® The Least Squares Regression Line modeling Y as a function of X is
Y = B0+ BiX

where the slope (31 is given by
B=2R
Sx

and where the intercept is given by

Bo=y— Pk
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Properties of the Least-Squares Regression line

® The least squares line is

. s _ _
Y = B0+ /X ﬁlZ:yR Bo =y — Bix
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Properties of the Least-Squares Regression line

® The least squares line is

. s _ _
Y = B0+ /X ﬁlZ:yR Bo =y — Bix

® The least squares line minimizes the sum of squared residuals ef + e% + -+ e,27.
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® The least squares line is
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® The line always goes through the point (x,¥)
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® The least squares line minimizes the sum of squared residuals ef + e% + -+ e,27.

® The line always goes through the point (x,¥)

® The slope has the same sign as the correlation coefficient
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Properties of the Least-Squares Regression line

® The least squares line is

. s _ _
Y = B0+ /X ﬁlZ:yR Bo =y — Bix

® The least squares line minimizes the sum of squared residuals ef + e% + -+ e,27.

® The line always goes through the point (x,¥)
® The slope has the same sign as the correlation coefficient

® The slope is close to 0 when either R =~ 0 or when sy is much bigger than s,
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Properties of the Least-Squares Regression line

® The least squares line is

. s _ _
Y = B0+ /X ﬁlZ:yR Bo =y — Bix

® The least squares line minimizes the sum of squared residuals ef + e% + -+ e,27.

® The line always goes through the point (x,¥)
® The slope has the same sign as the correlation coefficient
® The slope is close to 0 when either R =~ 0 or when sy is much bigger than s,

® A large slope does not indicate strong correlation and a small slope does not indicate
lack of correlation
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Goals for Regression

Least squared regression is used for 3 primary tasks:
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable

® EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410
ppm CO2 in 2025.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable

® EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410
ppm CO2 in 2025.

® Inferring relationships about a population based on relationships observed in a sample.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable

® EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410
ppm CO2 in 2025.

® Inferring relationships about a population based on relationships observed in a sample.

® EX: Based on the negative correlation between poverty and graduation rate observed in
the sample of states in 2020, we infer that in general, a state’s poverty and graduation
rate are negatively correlated.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable

® EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410
ppm CO2 in 2025.

® Inferring relationships about a population based on relationships observed in a sample.

® EX: Based on the negative correlation between poverty and graduation rate observed in
the sample of states in 2020, we infer that in general, a state’s poverty and graduation
rate are negatively correlated.

® We can always find the line of best fit to explore data.
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Goals for Regression

Least squared regression is used for 3 primary tasks:

® Exploring and summarizing relationships between quantitative variables in a data set.

® EX: In 2020, we observe that countries with higher GDP per capita consistently have
higher average life expectancy.

® Predicting values of the response variable based on values of the explanatory variable

® EX: Using data between 1960 and 2015, we predict the atmosphere will contain 410
ppm CO2 in 2025.

® Inferring relationships about a population based on relationships observed in a sample.

® EX: Based on the negative correlation between poverty and graduation rate observed in
the sample of states in 2020, we infer that in general, a state’s poverty and graduation
rate are negatively correlated.

® We can always find the line of best fit to explore data.

® However, if we want to make accurate predictions or justified inference, we need to
ensure certain conditions are satisfied.
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® Check using residual plot.
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Conditions for Using Linear Regression

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® Check using residual plot.
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Linearity

@ The relationship between explanatory and response variables must be approximately
linear.

Linear Non-Linear
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Linearity

@ The relationship between explanatory and response variables must be approximately
linear.

Linear Non-Linear

® |f data is non-linear. ..
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Linearity

@ The relationship between explanatory and response variables must be approximately
linear.

Linear Non-Linear

® |f data is non-linear. ..
® Slope does not adequately describe relationship
® Predictions can be very inaccurate

® More advanced modeling techniques should be used (Math 243)
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Independent Observations

® The observations should be independent of one another.

Line of Best Fit Geom_Line
6 6
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Independent Observations

® The observations should be independent of one another.

Line of Best Fit Geom_Line
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® |f observations are not independent. ..
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Independent Observations

® The observations should be independent of one another.

Line of Best Fit Geom_Line
6

0.00 0.25 050 075 1.00 0.00 0.25 050 075 1.00

® |f observations are not independent. ..
® Coincidental trends more likely to appear
® Slope and intercept estimates are more variable in sample

® More advanced modeling techniques should be used (Math 243)
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Normal Residuals

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0.

Residual Plot: Normal Residual Plot: Non—Normal
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Normal Residuals

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0.

Residual Plot: Normal Residual Plot: Non—Normal
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® |f residuals are non-Normal. ..
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Normal Residuals

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0.

Residual Plot: Normal Residual Plot: Non—Normal
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® If residuals are non-Normal. ..
® Cannot estimate trends in population
® Some predictions can be very inaccurate

® More advanced modeling techniques should be used (Math 243)
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Equal Variability

@ The variability of residuals should be roughly constant across entire data set.

Equal Variability Non-Equal Variability
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Equal Variability

@ The variability of residuals should be roughly constant across entire data set.

Equal Variability Non-Equal Variability
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® |f residuals don't have equal variability. . .
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Equal Variability

@ The variability of residuals should be roughly constant across entire data set.

Equal Variability Non-Equal Variability

0.00 025 050 075 1.00 0.00 025 0.50 075 1.00

® |f residuals don't have equal variability. . .
® Inference about the population may be misleading
® OQutliers in high-variability range are more influential

® More advanced modeling techniques should be used (Math 243)
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Outliers

® An outlier in regression is an observation that lies far from the cloud of data points.

Outlier in Scatterplot Outlier in Residual Plot
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® OQutliers can arise for a variety of reasons. . .
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Outliers

® An outlier in regression is an observation that lies far from the cloud of data points.

Outlier in Scatterplot Outlier in Residual Plot
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® OQutliers can arise for a variety of reasons. . .
® Measurement, recording, or reporting error
® Evidence of possible confounding variable
® Random chance in sampling
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Effect of Outliers on Least Squares

® The least squares line is not robust against outliers

Without Outlier With Outlier
Trendline in blue New trendline in red
.
9 9
. . . .
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Effect of Outliers on Least Squares

® The least squares line is not robust against outliers

Without Outlier With Outlier
Trendline in blue New trendline in red
.
9 9
. . . .

® Qutliers that have both extreme y values and extreme x values have the potential to
significantly change slope and intercept of regression line
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Effect of Outliers on Least Squares

® The least squares line is not robust against outliers

Without Outlier With Outlier
Trendline in blue New trendline in red
.
9 9
. . . .

® Qutliers that have both extreme y values and extreme x values have the potential to
significantly change slope and intercept of regression line

® But unless you have very good reason to, do not remove outliers (they tell an
important story about the data)
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Coefficient of Variation

® The correlation coefficient R measures the strength and direction of a linear
relationship.
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Coefficient of Variation

® The correlation coefficient R measures the strength and direction of a linear
relationship.

® But another common measure of the strength of a linear relationship is the
coefficient of variation R? (sometimes just called “R-squared”)

® Since R is a number between —1 and 1, then R? will always be between 0 and 1.
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Coefficient of Variation

® The correlation coefficient R measures the strength and direction of a linear
relationship.

® But another common measure of the strength of a linear relationship is the
coefficient of variation R? (sometimes just called “R-squared”)

® Since R is a number between —1 and 1, then R? will always be between 0 and 1.

® The value of R? measures the proportion of variation in the response variable Y that
is explained by its linear relationship with the explanatory variable X.
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Coefficient of Variation

® The correlation coefficient R measures the strength and direction of a linear
relationship.

® But another common measure of the strength of a linear relationship is the
coefficient of variation R? (sometimes just called “R-squared”)

® Since R is a number between —1 and 1, then R? will always be between 0 and 1.

® The value of R? measures the proportion of variation in the response variable Y that
is explained by its linear relationship with the explanatory variable X.

® R? can also be computed as

__ Variability in Y explained by X Sf — SPes

R?
Variability in Y s?
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Values of R"2

If R? ~ 1: nearly all the variability in response is due to variability in the explanatory
variable.
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Values of R"2

If R? ~ 1: nearly all the variability in response is due to variability in the explanatory

variable.
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Values of R?

If R? ~ 0: almost none of the variability in response is due to variability in the explanatory
variable.
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Values of R?

If R? ~ 0: almost none of the variability in response is due to variability in the explanatory

variable.
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Section 2

Linear Regression in Practice
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Review of Regression in R

@ State research question and identify variables
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Review of Regression in R

@ State research question and identify variables

® Load data
® the_data <- read_csv("example.csv")
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Review of Regression in R

@ State research question and identify variables

® Load data
® the_data <- read_csv("example.csv")

© Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()
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Review of Regression in R

@ State research question and identify variables

® Load data
® the_data <- read_csv("example.csv")

© Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()

@ Compute correlation and R? for pair of variables
® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)
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Review of Regression in R

@ State research question and identify variables

® Load data
® the_data <- read_csv("example.csv")
© Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()
@ Compute correlation and R? for pair of variables
® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)

@ Fit a linear model to the data
® nice_model<- 1lm(var2 ~ varl, data = the_data)
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Review of Regression in R

o
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State research question and identify variables

Load data
® the_data <- read_csv("example.csv")

Perform exploratory data analysis (using dplyr and ggplot)

® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()
Compute correlation and R? for pair of variables

® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)
Fit a linear model to the data

® nice_model<- 1lm(var2 ~ varl, data = the_data)

Get equation of regression line from regression table
® get_regression_table(nice_model)
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Review of Regression in R
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State research question and identify variables
Load data

® the_data <- read_csv("example.csv")
Perform exploratory data analysis (using dplyr and ggplot)

® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()
Compute correlation and R? for pair of variables

® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)
Fit a linear model to the data

® nice_model<- 1lm(var2 ~ varl, data = the_data)
Get equation of regression line from regression table

® get_regression_table(nice_model)

Plot regression line
® ggplot( ... ) + geom_point() + geom_smooth(method = "Im", se = F)
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State research question and identify variables

Load data
® the_data <- read_csv("example.csv")

Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()

Compute correlation and R? for pair of variables
® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)

Fit a linear model to the data
® nice_model<- 1lm(var2 ~ varl, data = the_data)

Get equation of regression line from regression table
® get_regression_table(nice_model)

Plot regression line
® ggplot( ... ) + geom_point() + geom_smooth(method = "Im", se = F)

Calculate residuals and create residual plot
® model_residuals <- get_regression_points(nice_model)
® ggplot(model_residuals, aes(x = varl, y = residual) ) + geom_point() +
geom_smooth(method = "lm", se = F)
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Review of Regression in R
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State research question and identify variables
Load data
® the_data <- read_csv("example.csv")

Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()
Compute correlation and R? for pair of variables
® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)
Fit a linear model to the data
® nice_model<- 1lm(var2 ~ varl, data = the_data)
Get equation of regression line from regression table
® get_regression_table(nice_model)
Plot regression line
® ggplot( ... ) + geom_point() + geom_smooth(method = "Im", se = F)

Calculate residuals and create residual plot
® model_residuals <- get_regression_points(nice_model)
® ggplot(model_residuals, aes(x = varl, y = residual) ) + geom_point() +
geom_smooth(method = "lm", se = F)

© Assess model conditions and investigate outliers.
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Review of Regression in R
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State research question and identify variables

Load data
® the_data <- read_csv("example.csv")

Perform exploratory data analysis (using dplyr and ggplot)
® ggplot(the_data, aes(x = varl, y = var2) ) + geom_point()

Compute correlation and R? for pair of variables
® the_data %>% summarize(cor = cor(varl, var2)) %>} mutate(R_sq = cor”2)

Fit a linear model to the data
® nice_model<- 1lm(var2 ~ varl, data = the_data)

Get equation of regression line from regression table
® get_regression_table(nice_model)

Plot regression line
® ggplot( ... ) + geom_point() + geom_smooth(method = "Im", se = F)
Calculate residuals and create residual plot
® model_residuals <- get_regression_points(nice_model)
® ggplot(model_residuals, aes(x = varl, y = residual) ) + geom_point() +
geom_smooth(method = "lm", se = F)
© Assess model conditions and investigate outliers.

10

Make conclusions.
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

® Explanatory Variable: Poverty Rate
® Response Variable: Graduation Rate
® Population: The contemporary United States

® Sample: US States (2018 - 2020)
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

® Explanatory Variable: Poverty Rate
® Response Variable: Graduation Rate
® Population: The contemporary United States

® Sample: US States (2018 - 2020)

® Research Method: Build a linear model for graduation rate as a function of poverty
rate, using individual states as observations.
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

® Explanatory Variable: Poverty Rate
® Response Variable: Graduation Rate
® Population: The contemporary United States

® Sample: US States (2018 - 2020)

® Research Method: Build a linear model for graduation rate as a function of poverty
rate, using individual states as observations.

® Data: We've obtained data called states on poverty rate from the 2020 US Census,
and data on graduation rate from a 2018-2019 report by NCES
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

® Explanatory Variable: Poverty Rate
® Response Variable: Graduation Rate
® Population: The contemporary United States

® Sample: US States (2018 - 2020)

® Research Method: Build a linear model for graduation rate as a function of poverty
rate, using individual states as observations.

® Data: We've obtained data called states on poverty rate from the 2020 US Census,
and data on graduation rate from a 2018-2019 report by NCES

® grad_rate denotes the adjusted cohort graduation rate (percent of high school
freshmen who finish with regular diploma within 4 years of starting 9th grade)
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Poverty and Graduation Rate

® Research Question: In the contemporary United States, what is the relationship
between poverty rate and graduation rate at the state level?

® Explanatory Variable: Poverty Rate
® Response Variable: Graduation Rate
® Population: The contemporary United States

® Sample: US States (2018 - 2020)

® Research Method: Build a linear model for graduation rate as a function of poverty
rate, using individual states as observations.

® Data: We've obtained data called states on poverty rate from the 2020 US Census,
and data on graduation rate from a 2018-2019 report by NCES

® grad_rate denotes the adjusted cohort graduation rate (percent of high school
freshmen who finish with regular diploma within 4 years of starting 9th grade)

® poverty denotes the proportion of state population living below poverty threshold
(26,246 per person, for family of 4 with two children)
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Exploratory Analysis

® Visualize Relationship using ggplot2

ggplot (states, aes( grad_rate, poverty)) +
geom_point ()+
geom_smooth( "Im", F)+
labs( "Poverty and Graduation Rate in the US")+
theme_bw ()

Poverty and Graduation Rate in the US

grad_rate
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Exploratory Analysis

® Visualize Relationship using ggplot2 e Compute relevant summary statistics
ggplot(states, aes(y = grad_rate, poverty)) +  ysing dplyr

geom_point () + /5 ;

geom_smooth ( "lm" F)+ states %>% summarize(

labs( "Poverty and Graduation Rate in * mean(poverty),

theme_bw() sd(poverty),

mean(grad_rate),
sd(grad_rate))

Poverty and Graduation Rate in the US

## # A tibble: 1 x 4

## mean_poverty sd_poverty mean_grad sd_grad
## <dbl> <dbl> <dbl>  <dbl>
## 1 13.5 3.02 85.2 4.48

grad_rate
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Exploratory Analysis

® Visualize Relationship using ggplot2 e Compute relevant summary statistics
ggplot(states, aes(y = grad_rate, poverty)) +  ysing dplyr

geom_point () + /5 ;

geom_smooth ( "lm" F)+ states %>% summarize(

labs( "Poverty and Graduation Rate in * mean(poverty),

theme_bw() sd(poverty),

mean(grad_rate),
sd(grad_rate))

Poverty and Graduation Rate in the US

## # A tibble: 1 x 4
## mean_poverty sd_poverty mean_grad sd_grad

- ## <dbl> <dbl> <dbl> <dbl>
## 1 13.5 3.02 85.2 4.48
g‘m states %>/ summarize(
° . cor(grad_rate, poverty)) %>%
i . mutate ( R"2)
## # A tibble: 1 x 2
## R R_sq
: ## <dbl> <dbl>
poverty ## 1 -0.241 0.0582

Nate Wells Linear Models



Linear Regression in Practice
000000000000

Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)
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Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)

® Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7

##  term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8

## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055
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Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)

® Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7

##  term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8

## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055

® Express the coefficients in terms of a linear function
Grad Rate = 90.1 — 0.358 - Poverty
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Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)

® Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7

##  term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8

## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055

® Express the coefficients in terms of a linear function
Grad Rate = 90.1 — 0.358 - Poverty

® |nterpret the coefficients
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Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)

® Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7

##  term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8

## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055

® Express the coefficients in terms of a linear function
Grad Rate = 90.1 — 0.358 - Poverty
® |nterpret the coefficients

® Every 1 unit increase in poverty corresponds to a .358 unit decrease in graduation rate.
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Fit the Linear Model

® Fit the linear modeling using 1m
states_mod <- lm(grad_rate ~ poverty, states)

® Get the regression equation
get_regression_table(states_mod)

## # A tibble: 2 x 7

##  term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 intercept 90.1 2.84 31.8 0 84.4 95.8

## 2 poverty -0.358 0.206 -1.74 0.088 -0.771 0.055

® Express the coefficients in terms of a linear function
Grad Rate = 90.1 — 0.358 - Poverty
® |nterpret the coefficients
® Every 1 unit increase in poverty corresponds to a .358 unit decrease in graduation rate.

® The predicted graduation rate for a state with 0 poverty is 90.062

Nate Wells Linear Models
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® Get residuals

state_residuals <- get_regression_points(states_mod)

ggplot (state_residuals,

aes(x = poverty, y = residual)) +
geom_point ()+
geom_smooth(method = "Im", se = F)+
labs(title = "Residual Plot")+
theme_bw ()
Residual Plot
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ggplot(state_residuals,
aes(x = residual)) +
geom_histogram(bins = 10, color =
labs(title =
theme_bw ()

"white")+
"Histogram of Residuals")+

Histogram of Residuals
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Assess Conditions for Linear Regression

@ Linearity?

Nate Wells Linear Models Math 141, 2/18/22 23 /28
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Assess Conditions for Linear Regression

@ Linearity?

Poverty and Graduation Rate in the US
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Assess Conditions for Linear Regression

@ Linearity?
Poverty and Graduation Rate in the US Residual Plot
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® Scatterplot suggests a weak linear relationship between poverty and grad_rate, but
residual plot doesn't show any strong non-linear trends
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Assess Conditions for Linear Regression

® Independence?

Nate Wells Linear Models Math 141, 2/18/22 24 /28
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Assess Conditions for Linear Regression

® Independence?

Poverty and Graduation Rate in the US
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Assess Conditions for Linear Regression

® Independence?

Poverty and Graduation Rate in the US
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® States in close geographic proximity tend to have similar poverty and grad rates.
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Assess Conditions for Linear Regression

©® Normal residuals?
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Assess Conditions for Linear Regression

©® Normal residuals?

Histogram of Residuals
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Assess Conditions for Linear Regression

©® Normal residuals?

Histogram of Residuals
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® Residual distribution appears to be (mostly) symmetric, unimodal, and centered at 0.
Roughly bell-shaped. But with 1 notable outlier.
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Assess Conditions for Linear Regression

©® Equal Variability?
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Assess Conditions for Linear Regression

©® Equal Variability?
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©® Equal Variability?
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Residual Plot
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® Variability in outliers is relatively consistent across poverty range (with exception of

outlier)
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Investigate Outliers

® What's up with DC?
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Investigate Outliers

® What's up with DC?

states %>% states %>% filter(abbr!="DC") %>%
ggplot (aes( grad_rate, poverty)) + ggplot (aes( grad_rate, poverty)) +
geom_point ()+ geom_point ()+
geom_smooth( "Im", F)+ geom_smooth( "Im", F)+
labs( "With DC")+theme_bw()+ labs( "Without DC")+theme_bw()+
scale_y_continuous( c(65,95)) scale_y_continuous( c(65,95))
With DC ‘Without DC

o

d_rate

150

grax
grad_rate

poverty poverty
states %>% states %>}, filter(abbr != "DC") %>%
summarize ( cor(poverty, grad_rate)) summarize ( cor(poverty, grad_rate))
## # A tibble: 1 x 1 ## # A tibble: 1 x 1
#it R #i R
## <dbl> ## <dbl>
## 1 -0.241 ## 1 -0.142
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Conclusions

® \What have we learned?
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Conclusions

® \What have we learned?

® Based on data from 2018 - 2020, there seems to be some evidence of a negative linear
relationship between poverty rate and graduation rate (R = —.24)
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Conclusions

® \What have we learned?

® Based on data from 2018 - 2020, there seems to be some evidence of a negative linear
relationship between poverty rate and graduation rate (R = —.24)

® However, an outlier (Washington D.C.) was influential in the model, and with this
outlier removed, the linear relationship was considerably weaker (R = —.14)
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Conclusions

® \What have we learned?

® Based on data from 2018 - 2020, there seems to be some evidence of a negative linear
relationship between poverty rate and graduation rate (R = —.24)

® However, an outlier (Washington D.C.) was influential in the model, and with this
outlier removed, the linear relationship was considerably weaker (R = —.14)

® Geo-politically similar states appear to have similar graduation and poverty rates, raising
concerns about independence of observations; variability of residuals in this sample may
not represent variability overall
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Conclusions

® \What have we learned?

® Based on data from 2018 - 2020, there seems to be some evidence of a negative linear
relationship between poverty rate and graduation rate (R = —.24)

® However, an outlier (Washington D.C.) was influential in the model, and with this
outlier removed, the linear relationship was considerably weaker (R = —.14)

® Geo-politically similar states appear to have similar graduation and poverty rates, raising
concerns about independence of observations; variability of residuals in this sample may
not represent variability overall

® Further studies should be conducted to assess whether these trends (a) change over
time, and (b) are replicated at smaller scale.
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