Linear Regression with Categorical Variables

Nate Wells

Math 141, 2/21/22

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Create linear models with binary categorical explanatory variables
- Extend linear models to include arbitrary categorical explanatory variables

Section 1

Regression for Binary Categorical Variables

Overview of Regression for a Categorical Variable

• Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \cdots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

• Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \cdots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

• General linear regression requires a quantitative response variable, but allows us to:

• Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \cdots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

- General linear regression requires a quantitative response variable, but allows us to:
 - Use either quantitative or categorical explanatory variables
 - Simultaneously include multiple explanatory variables
 - Model non-linear relationships between explanatory and response variables.

• Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \cdots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

- General linear regression requires a quantitative response variable, but allows us to:
 - Use either quantitative or categorical explanatory variables
 - Simultaneously include multiple explanatory variables
 - Model non-linear relationships between explanatory and response variables.
- Today, we'll focus on just the first extension above: *using categorical explanatory variables.*

• Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

##	# /	A ti	bble:	42	2 x	2		
##		sec	tion		mg			
##		<fo< th=""><th>:t></th><th><dł< th=""><th>>1></th><th></th><th></th><th></th></dł<></th></fo<>	:t>	<dł< th=""><th>>1></th><th></th><th></th><th></th></dł<>	>1>			
##	1	10a	m		0			
##	2	9an	1	2	200			
##	3	10a	m		0			
##	4	10a	m	6	600			
##	5	10a	m	1	20			
##	6	9an	1	4	100			
##	7	9an	1	2	275			
##	8	10a	m	1	.00			
##	9	10a	m	2	200			
##	10	10a	m	1	.75			
##	#		with	32	moi	re	row	s

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:
- And compute relevant statistics:

##	# 1	A tib	ble:	42	х	2		
##		sect	ion	1	ng			
##		<fct< th=""><th>> ·</th><th><db]< th=""><th>1></th><th></th><th></th><th></th></db]<></th></fct<>	> ·	<db]< th=""><th>1></th><th></th><th></th><th></th></db]<>	1>			
##	1	10am			0			
##	2	9am		20	00			
##	3	10am			0			
##	4	10am		60	00			
##	5	10am		1:	20			
##	6	9am		40	00			
##	7	9am		2	75			
##	8	10am		10	00			
##	9	10am		20	00			
##	10	10am		1	75			
##	#	w:	ith 3	32 i	nor	е	rov	1S

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

```
• And compute relevant statistics:
```

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 10am
##
                    0
##
    2 9am
                 200
##
    3 10am
                   0
##
    4 10am
                 600
##
    5 10am
                 120
##
    6 9am
                 400
                 275
##
    7 9am
##
    8 10am
                 100
##
    9 10am
                 200
   10 10am
                 175
##
   # ... with 32 more rows
##
```

```
caffeine %>% group by(section) %>%
  summarize(
    mean_score = mean(mg),
    sd score = sd(mg),
    n = n())
## # A tibble: 2 \times 4
##
     section mean score sd score
     <fct>
                            <dbl> <int>
##
                   <db1>
## 1 9am
                             177.
                                      21
                    193.
```

157.

174.

2 10am

n

21

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:
- ## # A tibble: 42 x 2 ## section mg ## <fct> <dbl> 1 10am ## 0 ## 2 9am 200 ## 3 10am 0 ## 4 10am 600 ## 5 10am 120 ## 6 9am 400 275 ## 7 9am 8 10am 100 ## ## 9 10am 200 10 10am 175 ## # ... with 32 more rows ##

```
    And compute relevant statistics:
```

```
caffeine %>% group_by(section) %>%
summarize(
    mean_score = mean(mg),
    sd_score = sd(mg),
    n = n() )
```

##	#	A tibble	e: 2 x 4		
##		section	mean_score	sd_score	n
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	9am	193.	177.	21
##	2	10am	157.	174.	21

• Note that mean consumption is higher in the 9am section (but not much higher relative to standard deviation)

- Suppose we are interested in whether a 9am or 10am section of Math 141 consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:
- ## # A tibble: 42 x 2 ## section mg ## <fct> <dbl> 1 10am ## 0 ## 2 9am 200 ## 3 10am 0 ## 4 10am 600 ## 5 10am 120 ## 6 9am 400 275 ## 7 9am 8 10am 100 ## ## 9 10am 200 10 10am 175 ## # ... with 32 more rows ##

```
    And compute relevant statistics:
```

```
caffeine %>% group_by(section) %>%
summarize(
    mean_score = mean(mg),
    sd_score = sd(mg),
    n = n() )
```

##	#	A tibble	e: 2 x 4		
##		section	mean_score	sd_score	n
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	9am	193.	177.	21
##	2	10am	157.	174.	21

• Note that mean consumption is higher in the 9am section (but not much higher relative to standard deviation)

Visualizations

• Since the response is quantitative, and the explanatory is categorical, we can visualize either with side-by-side boxplots or with a jittered scatterplot:

Visualizations

• Since the response is quantitative, and the explanatory is categorical, we can visualize either with side-by-side boxplots or with a jittered scatterplot:

• Advantages of each type of plot?

Recoding Binary Variables

• A linear model for mg as a function of section is problematic:

 $\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section}$

• A linear model for mg as a function of section is problematic:

```
\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}
```

section is categorical, so we can't add or multiply its values to get a number

• A linear model for mg as a function of section is problematic:

```
\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}
```

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!

• A linear model for mg as a function of section is problematic:

```
\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}
```

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can **recode** the levels of section as a numeric **indicator** variable

• A linear model for mg as a function of section is problematic:

```
\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section}
```

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!

• We can recode the levels of section as a numeric indicator variable

```
caffeine <- caffeine %>% mutate(
    section_10am = ifelse(section == "10am", 1, 0) )
```

• A linear model for mg as a function of section is problematic:

```
\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}
```

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can recode the levels of section as a numeric indicator variable

```
caffeine <- caffeine %>% mutate(
    section_10am = ifelse(section == "10am", 1, 0) )
```

```
##
   # A tibble: 42 \times 3
      section 10am section
##
                                  mg
               <dbl> <fct>
##
                               <dbl>
                   0 9am
                                 300
##
    1
    2
                   0 9am
                                 175
##
                   0 9am
##
    3
                                 150
##
    4
                   0 9am
                                 300
##
    5
                   0 9am
##
    6
                   1 10am
                                  25
                   0 9am
                                 200
##
    7
##
    8
                   1 10am
                                 275
                   0 9am
                                 200
##
    9
                   1 10am
                                 100
##
   10
## #
          with 32 more rows
```

- The variable section_10am takes the value...
 - 1, if a student is in the 10am section
 - 0, if a student is in the 9am section

• A linear model for mg as a function of section is problematic:

```
\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}
```

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can recode the levels of section as a numeric indicator variable

```
caffeine <- caffeine %>% mutate(
    section_10am = ifelse(section == "10am", 1, 0) )
```

```
##
   # A tibble: 42 \times 3
      section 10am section
##
                                  mg
               <dbl> <fct>
##
                               <dbl>
                   0 9am
                                 300
##
    1
    2
                   0 9am
                                 175
##
                   0 9am
##
    3
                                 150
##
    4
                   0 9am
                                 300
##
    5
                   0 9am
##
    6
                   1 10am
                                  25
    7
                   0 9am
                                 200
##
##
    8
                   1 10am
                                 275
                   0 9am
                                 200
##
    9
                   1 10am
                                 100
##
   10
## #
          with 32 more rows
```

- The variable section_10am takes the value...
 - 1, if a student is in the 10am section
 - 0, if a student is in the 9am section
- This choice was somewhat arbitrary.
 - We could have instead created a variable called section_9am that takes the value 1 if a student is in the 9am section.

Linear Models for Binary Categorical Variables

• After recoding, a linear equation is now possible:

 $\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section_10am}$

Linear Models for Binary Categorical Variables

• After recoding, a linear equation is now possible:

 $\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section_10am}$

• After recoding, a linear equation is now possible:

 $\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section_10am}$

• For example, suppose

 $\hat{\mathrm{mg}} = 193 - 36 \cdot \mathrm{section_10am}$

• After recoding, a linear equation is now possible:

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}_{10am}$$

• For example, suppose

$$\hat{mg} = 193 - 36 \cdot \text{section}_{10am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 1 = 157$$

• After recoding, a linear equation is now possible:

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \text{section}_10\text{am}$$

• For example, suppose

$$\hat{mg} = 193 - 36 \cdot \text{section}_{10am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 1 = 157$$

• If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

• After recoding, a linear equation is now possible:

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \text{section}_10\text{am}$$

• For example, suppose

$$\hat{mg} = 193 - 36 \cdot \text{section} 10 \text{am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 1 = 157$$

• If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

The value of β₀ is the prediction for students *not* in the 10am section. This is the baseline prediction. (The baseline is 193mg)

• After recoding, a linear equation is now possible:

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \text{section}_10\text{am}$$

• For example, suppose

$$\hat{mg} = 193 - 36 \cdot \text{section} 10 \text{am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 1 = 157$$

• If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

- The value of β₀ is the prediction for students *not* in the 10am section. This is the baseline prediction. (The baseline is 193mg)
- The value of β_1 is the **change** in prediction for a student in the 10am section, relative to the baseline. (The change is -36mg)

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

Jittered Scatterplot

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• Since this is a scatterplot of two quantitative variables, we can find the line of best fit!

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• Since this is a scatterplot of two quantitative variables, we can find the line of best fit!
Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• The line of best fit passes through the mean mg in each section!

Properties of Least Squares Regression when *X* is binary

• In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X = 0.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X = 0.
 - If X is binary, the best prediction for Y when X = 0 is the mean value of Y when X = 0

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X = 0.
 - If X is binary, the best prediction for Y when X = 0 is the mean value of Y when X = 0
- If Y is a quantitative response variable and X is a binary numeric variable, then the least squares regression line is

$$\hat{Y} = \beta_0 + \beta_1 X$$

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X = 0.
 - If X is binary, the best prediction for Y when X = 0 is the mean value of Y when X = 0
- If Y is a quantitative response variable and X is a binary numeric variable, then the least squares regression line is

$$\hat{Y} = \beta_0 + \beta_1 X$$

- β_0 is the mean of Y when X = 0
- β_1 is the difference in means of Y between when X = 1 and X = 0.
- $\beta_0 + \beta_1$ is the mean of Y when X = 1.

Finding Least Squaress Line (by hand)

Since β₀, β₁ only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

Finding Least Squaress Line (by hand)

Since β₀, β₁ only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

caffeine %>% group_by(section) %>% summarize(mean = mean(mg))

A tibble: 2 x 2
section mean
<fct> <dbl>
1 9am 193.
2 10am 157.

Finding Least Squaress Line (by hand)

Since β₀, β₁ only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

caffeine %>% group_by(section) %>% summarize(mean = mean(mg))

A tibble: 2 x 2
section mean
<fct> <dbl>
1 9am 193.
2 10am 157.

 $\hat{mg} = 193 - 36 \cdot \text{section}_{10am}$ Since 193 - 157 = 36

Finding Least Squaress Line (using R)

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

But we can also use 1m in R.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

But we can also use 1m in R.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)

But we can also use 1m in R.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.

But we can also use 1m in R.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.
 - If no order is provided, it will use alphabetical order.

But we can also use 1m in R.

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.
 - If no order is provided, it will use alphabetical order.
 - If you want to change the order, you need to mutate the data frame using fct_relevel

Section 2

Linear Regression with Multi-level Categorical Variables

More Classes

• Suppose we also have data on caffeine consumption from a 3rd section of math 141.

```
## # A tibble: 63 x 2
##
      section
                   mg
##
     <fct>
                <dbl>
##
    1 Nate 10am
                    0
    2 Nate 9am
                  550
##
##
    3 Nate 10am
                    0
                    0
##
   4 Nate 10am
##
    5 Nick 9am
                    0
##
    6 Nate 9am
                 40
   7 Nate 9am
                  400
##
##
   8 Nick 9am
                 100
##
    9 Nate 10am
                  200
## 10 Nate 9am
                  100
## # ... with 53 more rows
```

```
caffeine3 %>% group_by(section) %>%
   summarize(mean_mg = mean(mg), sd_mg = sd(mg))
## # A tibble: 3 x 3
## section mean_mg sd_mg
## <fct> <dbl> <dbl>
## 1 Nick_9am 195. 164.
## 2 Nate_9am 193. 177.
## 3 Nate_10am 157. 174.
```

 Goal: Create a linear model that takes section as input and returns a predicted mg as output.

Multi-level Model, First Attempt

• We could try to recode levels by converting to the integers 0, 1 and 2.

Multi-level Model, First Attempt

- We could try to recode levels by converting to the integers 0, 1 and 2.
 - But this would be very problematic for creating the line of best fit. Why?

Multi-level Model, First Attempt

- We could try to recode levels by converting to the integers 0, 1 and 2.
 - But this would be very problematic for creating the line of best fit. Why?

Nick_9am = 0, Nate_9am = 1, Nate_10am = 2

Multi-level Model, First Attempt

- We could try to recode levels by converting to the integers 0, 1 and 2.
 - But this would be very problematic for creating the line of best fit. Why?

Nick_9am = 1, Nate_9am = 2, Nate_10am = 0

• Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
 - section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
 - section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
 - section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
 - section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
 - section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.
 - Note that for a given student, *exactly* one of these variables is 1, and the other two are 0.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
 - section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
 - section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.
 - Note that for a given student, exactly one of these variables is 1, and the other two are 0.

```
caffeine3 <- caffeine3 %>% mutate(
   section_Nick_9am = ifelse(section == "Nick_9am", 1, 0),
   section_Nate_9am = ifelse(section == "Nate_9am", 1, 0),
   section_Nate_10am = ifelse(section == "Nate_10am", 1, 0))
```

##	#	A tibble:	63 x 5			
##		section	section_Nick_9am	section_Nate_9am	section_Nate_10am	mg
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Nick_9am	1	0	0	140
##	2	Nate_10am	0	0	1	600
##	3	Nate_10am	0	0	1	0
##	4	Nick_9am	1	0	0	150
##	5	Nate_9am	0	1	0	50
##	#	with §	58 more rows			

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• For example, suppose

 $\hat{mg} = 195 - 1.5 \cdot \text{section}$ Nate $9am - 38 \cdot \text{section}$ Nate 10am

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}$ Nate $9am + \beta_2 \cdot \text{section}$ Nate 10am

• For example, suppose

 $\hat{mg} = 195 - 1.5 \cdot \text{section}$ Nate $9am - 38 \cdot \text{section}$ Nate 10am

- What is the predicted caffeine consumption for a student in
 - Nate's 9am section?
 - Nate's 10am section?
 - Nick's 9am section?

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• For example, suppose

- What is the predicted caffeine consumption for a student in
 - Nate's 9am section?
 - Nate's 10am section?
 - Nick's 9am section?
- Where did the indicator for Nick's 9am section go in the formula for the model???

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• For example, suppose

- What is the predicted caffeine consumption for a student in
 - Nate's 9am section?
 - Nate's 10am section?
 - Nick's 9am section?
- Where did the indicator for Nick's 9am section go in the formula for the model???
 - Nick's 9am section is treated as the **baseline**, and so does not need its own indicator.

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• For example, suppose

- What is the predicted caffeine consumption for a student in
 - Nate's 9am section?
 - Nate's 10am section?
 - Nick's 9am section?
- Where did the indicator for Nick's 9am section go in the formula for the model???
 - Nick's 9am section is treated as the baseline, and so does not need its own indicator.
 - The intercept is the prediction for the baseline.

• We can define a multivariate linear model for mg as a function of section by

 $\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_Nate_9am} + \beta_2 \cdot \text{section_Nate_10am}$

• For example, suppose

- What is the predicted caffeine consumption for a student in
 - Nate's 9am section?
 - Nate's 10am section?
 - Nick's 9am section?
- Where did the indicator for Nick's 9am section go in the formula for the model???
 - Nick's 9am section is treated as the baseline, and so does not need its own indicator.
 - The intercept is the prediction for the baseline.
 - Slopes on the other indicator variables correspond to differences from the baseline.

Multi-level Linear Model in R

• As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
 caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
 caf_mod3 <- lm(mg ~ section, data = caffeine3)

get_regression_table(caf_mod3)

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
sectionNate_9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
sectionNate_10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
 caf mod3 <- lm(mg ~ section, data = caffeine3)

get_regression_table(caf_mod3)

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
sectionNate_9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
sectionNate_10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline
Nick_9am	194.7619	0.000000
Nate_9am	193.3333	-1.428571
Nate_10am	156.9048	-37.857143

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
 caf_mod3 <- lm(mg ~ section, data = caffeine3)

get_regression_table(caf_mod3)

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
sectionNate_9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
sectionNate_10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline			
Nick_9am	194.7619	0.000000			
Nate_9am	193.3333	-1.428571			
Nate_10am	156.9048	-37.857143			

• The intercept is the mean value of the response for the baseline level.

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the lm function to create linear models for quantitative ~ multilevel in R
 caf mod3 <- lm(mg ~ section, data = caffeine3)

get_regression_table(caf_mod3)

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
sectionNate_9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
sectionNate_10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

• Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline
Nick_9am	194.7619	0.000000
Nate_9am	193.3333	-1.428571
Nate_10am	156.9048	-37.857143

- The intercept is the mean value of the response for the baseline level.
- The slopes are the difference in mean values between the indicated level and the baseline.

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

- As with simple linear regression for quantitative \sim quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

##	# A	tib	ble:	63	x 5		
##		I	D	mg	section	mg_hat	residual
##		<int< th=""><th>> <d< th=""><th>bl></th><th><fct></fct></th><th><dbl></dbl></th><th><dbl></dbl></th></d<></th></int<>	> <d< th=""><th>bl></th><th><fct></fct></th><th><dbl></dbl></th><th><dbl></dbl></th></d<>	bl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
##	1	5	7	225	Nick_9am	195.	30.2
##	2		4	150	Nate_9am	193.	-43.3
##	3	3	9	0	Nate_10am	157.	-157.
##	4		1	550	Nate_9am	193.	357.
##	5	3	4	0	Nate_10am	157.	-157.
##	6	2	3	0	Nate_10am	157.	-157.
##	7	4	3	0	Nick_9am	195.	-195.
##	8	1	4	40	Nate_9am	193.	-153.
##	9	1	8	400	Nate_9am	193.	207.
##	10	5	1	100	Nick_9am	195.	-94.8
##	#.	w	ith	53	nore rows		

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

##	# A	til	obl	e:	63	x 5				
##		-	ID		mg	section	n	mg_h	at	residual
##		<int< td=""><td>t></td><td><dł< td=""><td>>1></td><td><fct></fct></td><td></td><td><db< td=""><td>1></td><td><dbl></dbl></td></db<></td></dł<></td></int<>	t>	<dł< td=""><td>>1></td><td><fct></fct></td><td></td><td><db< td=""><td>1></td><td><dbl></dbl></td></db<></td></dł<>	>1>	<fct></fct>		<db< td=""><td>1></td><td><dbl></dbl></td></db<>	1>	<dbl></dbl>
##	1	Ę	57	2	225	Nick_9	am	19	5.	30.2
##	2		4	1	150	Nate_9	am	19	з.	-43.3
##	3	3	39		0	Nate_1	0am	15	7.	-157.
##	4		1	Ę	550	Nate_9	am	19	з.	357.
##	5	3	34		0	Nate_1	0am	15	7.	-157.
##	6	:	23		0	Nate_1	0am	15	7.	-157.
##	7	4	13		0	Nick_9	am	19	5.	-195.
##	8	:	14		40	Nate_9	am	19	з.	-153.
##	9	1	18	4	100	Nate_9	am	19	з.	207.
##	10	Ę	51	1	L00	Nick_9	am	19	5.	-94.8
##	#.		√it	h 5	53 r	nore ro	WS			

• Recall, residuals are the difference between the observed and predicted values

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

##	# A	tibb	le: 63	x 5		
##		ID	mg	section	mg_hat	residual
##		<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
##	1	57	225	Nick_9am	195.	30.2
##	2	4	150	Nate_9am	193.	-43.3
##	3	39	0	Nate_10am	157.	-157.
##	4	1	550	Nate_9am	193.	357.
##	5	34	0	Nate_10am	157.	-157.
##	6	23	0	Nate_10am	157.	-157.
##	7	43	0	Nick_9am	195.	-195.
##	8	14	40	Nate_9am	193.	-153.
##	9	18	400	Nate_9am	193.	207.
##	10	51	100	Nick_9am	195.	-94.8
##	#.	wi	th 53 m	nore rows		

- Recall, residuals are the difference between the observed and predicted values
- Here, residual tells us the difference between a student's actual mg consumed and the mean mg for that student's class.