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In this lecture, we will. . .
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In this lecture, we will. . .
® Create linear models with binary categorical explanatory variables

® Extend linear models to include arbitrary categorical explanatory variables

Nate Wells Linear Regression with Categorical Variables Math 141,



Regression for Binary Categorical Variables
900000000000

Section 1

Regression for Binary Categorical Variables
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Overview of Regression for a Categorical Variable

® Simple linear regression model a linear relationship between two quantitative
variables.
Y = B0+ B X
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Overview of Regression for a Categorical Variable

® Simple linear regression model a linear relationship between two quantitative
variables.

Y = 6o+ /X

® General Linear Regression is a more flexible class of models that take the form:

Y = Bo + Bia(X1) + Bofo(Xe) + - + Bofo(Xp)

where p is the number of variables present, fi,...,f, are functions of those variables,
and fo, B1, ..., Bp are fixed constants.
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where p is the number of variables present, fi,...,f, are functions of those variables,
and fo, B1, ..., Bp are fixed constants.

® General linear regression requires a quantitative response variable, but allows us to:
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Overview of Regression for a Categorical Variable

® Simple linear regression model a linear relationship between two quantitative
variables.
Y = B0+ B X

® General Linear Regression is a more flexible class of models that take the form:

Y = Bo + Bia(X1) + Bofo(Xe) + - + Bofo(Xp)

where p is the number of variables present, fi,...,f, are functions of those variables,
and fo, B1, ..., Bp are fixed constants.

® General linear regression requires a quantitative response variable, but allows us to:
® Use either quantitative or categorical explanatory variables
® Simultaneously include multiple explanatory variables

® Model non-linear relationships between explanatory and response variables.
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Overview of Regression for a Categorical Variable

Simple linear regression model a linear relationship between two quantitative
variables.

Y =B+ /X
® General Linear Regression is a more flexible class of models that take the form:

Y = Bo + Bia(X1) + Bofo(Xe) + - + Bofo(Xp)

where p is the number of variables present, fi,...,f, are functions of those variables,
and fo, B1, ..., Bp are fixed constants.

® General linear regression requires a quantitative response variable, but allows us to:
® Use either quantitative or categorical explanatory variables
® Simultaneously include multiple explanatory variables

® Model non-linear relationships between explanatory and response variables.

® Today, we'll focus on just the first extension above: using categorical explanatory
variables.
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.

® \We record caffeine consumption
for 42 students:
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.

® \We record caffeine consumption
for 42 students:

## # A tibble: 42 x 2

## section mg
## <fct> <dbl>
## 1 10am 0
## 2 9am 200
## 3 10am 0
## 4 10am 600
## 5 10am 120
## 6 9am 400
## 7 9am 275
## 8 10am 100
## 9 10am 200
## 10 10am 175
## # ... with 32 more rows
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.

® \We record caffeine consumption
for 42 students:

## # A tibble: 42 x 2

® And compute relevant statistics:

## section mg
## <fct> <dbl>
## 1 10am 0
## 2 9am 200
## 3 10am 0
## 4 10am 600
## 5 10am 120
## 6 9am 400
## 7 9am 275
## 8 10am 100
## 9 10am 200
## 10 10am 175
## # ... with 32 more rows
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We record caffeine consumption

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.

for 42 students:
## # A tibble: 42 x 2

##
##
##
##
##
##
##
##
##
##
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section mg
<fct> <dbl>
10am 0
9am 200
10am 0
10am 600
10am 120
9am 400
9am 275
10am 100
10am 200
10am 175

. with 32 more rows

Nate Wells

® And compute relevant statistics:

caffeine %>J, group_by(section) %>%
summarize (

mean (mg) ,
sd(mg) ,
nQ) )
## # A tibble: 2 x 4
## section mean_score sd_score n
## <fct> <dbl> <dbl> <int>
## 1 9am 193. 177. 21
## 2 10am 157. 174. 21
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Caffeine Consumption

® Suppose we are interested in whether a 9am or 10am section of Math 141 consumes
more caffeine on a typical day:

® \We record caffeine consumption

® \We can treat caffeine consumption in mg as the (quantitative) response variable, and
section as the (categorical) explanatory variable.

for 42 students:
## # A tibble: 42 x 2

##
##
##
##
##
##
##
##
##
##
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section mg
<fct> <dbl>
10am 0
9am 200
10am 0
10am 600
10am 120
9am 400
9am 275
10am 100
10am 200
10am 175

. with 32 more rows

Nate Wells

® And compute relevant statistics:

caffeine %>J, group_by(section) %>%
summarize (

mean (mg) ,
sd(mg) ,
nQ) )
## # A tibble: 2 x 4
## section mean_score sd_score n
## <fct> <dbl> <dbl> <int>
## 1 9am 193. 177. 21
## 2 10am 157. 174. 21

® Note that mean consumption is higher in the
9am section (but not much higher relative to
standard deviation)
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® And compute relevant statistics:

caffeine %>J, group_by(section) %>%
summarize (

mean (mg) ,
sd(mg) ,
nQ) )
## # A tibble: 2 x 4
## section mean_score sd_score n
## <fct> <dbl> <dbl> <int>
## 1 9am 193. 177. 21
## 2 10am 157. 174. 21

® Note that mean consumption is higher in the
9am section (but not much higher relative to
standard deviation)
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Visualizations

® Since the response is quantitative, and the explanatory is categorical, we can visualize
either with side-by-side boxplots or with a jittered scatterplot:

Side-by-side Boxplot Jittered Scatterplot
.
600 600+
400 section 4007 section
2 B oam P 9am
ES 10am 10am
200 200+ é
®
0 0-f -«
9am 10am 9am 10am
section section
Horizontal bars indicate median mg for each section Purple dots indicate mean mg for each section
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Visualizations

® Since the response is quantitative, and the explanatory is categorical, we can visualize
either with side-by-side boxplots or with a jittered scatterplot:

Side-by-side Boxplot Jittered Scatterplot
.
600 | 600
400 | section 400 | section
2 B oam P 9am
ES 10am 10am
200 | 2004 »
®
0 | 0- -«
9am 10am 9am 10am
section section
Horizontal bars indicate median mg for each section Purple dots indicate mean mg for each section

® Advantages of each type of plot?
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section

® section is categorical, so we can't add or multiply its values to get a number
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section
® section is categorical, so we can't add or multiply its values to get a number

® But there is a relatively easy fix!
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section
® section is categorical, so we can't add or multiply its values to get a number

® But there is a relatively easy fix!

® \We can recode the levels of section as a numeric indicator variable
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:
mg = Bo + B1 - section
® section is categorical, so we can't add or multiply its values to get a number

® But there is a relatively easy fix!
® \We can recode the levels of section as a numeric indicator variable

caffeine <- caffeine %>’ mutate(
ifelse(section == "10am", 1, 0) )
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section
® section is categorical, so we can't add or multiply its values to get a number

® But there is a relatively easy fix!

® \We can recode the levels of section as a numeric indicator variable

caffeine <- caffeine %>’ mutate(
ifelse(section == "10am", 1, 0) )

## # A tibble: 42 x 3

## section_10am section mg

:: 1 <dbl; ;i;t> <dgé; ® The variable section_10am takes the value. ..
## 2 0 9am 175 ® 1, if a student is in the 10am section
# 3 0 9am 150 ® 0, if a student is in the 9am section
## 4 0 9am 300

## 5 0 9am 0

## 6 1 10am 25

## 7 0 9am 200

## 8 1 10am 275

## 9 0 9am 200

## 10 1 10am 100

## # ... with 32 more rows
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Recoding Binary Variables

® A linear model for mg as a function of section is problematic:

mg = Bo + B1 - section
® section is categorical, so we can't add or multiply its values to get a number

® But there is a relatively easy fix!

® \We can recode the levels of section as a numeric indicator variable

caffeine <- caffeine %>’ mutate(
ifelse(section == "10am", 1, 0) )

## # A tibble: 42 x 3

## section_10am section mg
## <dbl> <fct> <dbl>

° . .
a1 0 9am 300 The variable section_10am takes the value. ..
## 2 0 9am 175 ® 1, if a student is in the 10am section
# 3 0 9am 150 ® 0, if a student is in the 9am section
## 4 0 9am 300
## 5 0 9am 0 ® This choice was somewhat arbitrary.
## 6 1 10am 25 . .

[ ]

4 7 0 9am 200 We c9u|d have instead created a varl.able called
## 8 1 10am 275 section_9am that takes the value 1 if a student
## 9 0 9am 200 is in the 9am section.
## 10 1 10am 100
## # ... with 32 more rows
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:

mg = [o + (1 - section__10am
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:

mg = [o + (1 - section__10am
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:
mg = [o + (1 - section__10am

® For example, suppose
mg = 193 — 36 - section__10am
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:
mg = [o + (1 - section__10am

® For example, suppose
mg = 193 — 36 - section__10am

® If a student is in the 10am section, then section_10am = 1, then the model predicts

mg =193 — 36 -1 =157
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:
mg = [o + (1 - section__10am
® For example, suppose
mg = 193 — 36 - section__10am
® If a student is in the 10am section, then section_10am = 1, then the model predicts
mg =193 —36-1 = 157
® |f a student is in the 9am section, then section_10am = 0, then the model predicts

ng =193 -36-0 =193
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:
mg = [o + (1 - section__10am
® For example, suppose
mg = 193 — 36 - section__10am
® If a student is in the 10am section, then section_10am = 1, then the model predicts
mg =193 —36-1 = 157
® |f a student is in the 9am section, then section_10am = 0, then the model predicts
mg =193 —36-0 = 193

® The value of (3 is the prediction for students not in the 10am section. This is the
baseline prediction. (The baseline is 193mg)
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Linear Models for Binary Categorical Variables

® After recoding, a linear equation is now possible:
mg = [o + (1 - section__10am
® For example, suppose

mg = 193 — 36 - section__10am

® If a student is in the 10am section, then section_10am = 1, then the model predicts
nig =193 —36-1 =157
® |f a student is in the 9am section, then section_10am = 0, then the model predicts
nig =193 —36-0 =193
® The value of (3 is the prediction for students not in the 10am section. This is the

baseline prediction. (The baseline is 193mg)

® The value of 31 is the change in prediction for a student in the 10am section, relative
to the baseline. (The change is —36mg)
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Least Squares Regression

® Consider the jittered scatterplot for mg and section_10am

Jittered Scatterplot
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Purple dots indicate mean mg for each section
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Least Squares Regression

® Consider the jittered scatterplot for mg and section_10am

Jittered Scatterplot
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® Since this is a scatterplot of two quantitative variables, we can find the line of best fit!
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Least Squares Regression

® Consider the jittered scatterplot for mg and section_10am

Jittered Scatterplot
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® Since this is a scatterplot of two quantitative variables, we can find the line of best fit!
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Least Squares Regression

® Consider the jittered scatterplot for mg and section_10am

Jittered Scatterplot
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Purple dots indicate mean mg for each section
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® The line of best fit passes through the mean mg in each section!
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Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.
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Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.

® |f X is binary, it can only take two values: 0 and 1.

® Increasing X by 1 exactly corresponds to changing from the first level of X to the
second level of X.

Nate Wells Linear Regression with Categorical Variables Math 141,



Regression for Binary Categorical Variables
000000000800

Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.

® |f X is binary, it can only take two values: 0 and 1.

® Increasing X by 1 exactly corresponds to changing from the first level of X to the
second level of X.

® The intercept [y of a regression line is the predicted value when X = 0.
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Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.

® |f X is binary, it can only take two values: 0 and 1.

® Increasing X by 1 exactly corresponds to changing from the first level of X to the
second level of X.

® The intercept [y of a regression line is the predicted value when X = 0.

® [f X is binary, the best prediction for Y when X = 0 is the mean value of Y when X =0
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Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.

® |f X is binary, it can only take two values: 0 and 1.

® Increasing X by 1 exactly corresponds to changing from the first level of X to the
second level of X.

® The intercept [y of a regression line is the predicted value when X = 0.
® [f X is binary, the best prediction for Y when X = 0 is the mean value of Y when X =0

® If Y is a quantitative response variable and X is a binary numeric variable, then the
least squares regression line is
Y = B0+ X
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Properties of Least Squares Regression when X is binary

® |n general, the slope ;1 of a regression line is the average change in Y per unit
increase in X.

® |f X is binary, it can only take two values: 0 and 1.

® Increasing X by 1 exactly corresponds to changing from the first level of X to the
second level of X.

® The intercept [y of a regression line is the predicted value when X = 0.
® [f X is binary, the best prediction for Y when X = 0 is the mean value of Y when X =0

® If Y is a quantitative response variable and X is a binary numeric variable, then the
least squares regression line is
Y = B0+ X

® [y is the mean of Y when X =0
® 3 is the difference in means of Y between when X =1 and X = 0.

® By + 1 is the mean of Y when X = 1.
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Finding Least Squaress Line (by hand)

® Since fo, 81 only require us to know the mean of Y when X is 0 and 1, we can
compute the least squares line by hand:
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Finding Least Squaress Line (by hand)

® Since fo, 81 only require us to know the mean of Y when X is 0 and 1, we can
compute the least squares line by hand:

caffeine %>% group_by(section) %>, summarize( mean (mg) )

## # A tibble: 2 x 2
## section mean
##  <fct> <dbl>
## 1 9am 193.
## 2 10am 157.
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Finding Least Squaress Line (by hand)

® Since fo, 81 only require us to know the mean of Y when X is 0 and 1, we can
compute the least squares line by hand:

caffeine %>% group_by(section) %>, summarize( mean (mg) )

## # A tibble: 2 x 2
## section mean
##  <fct> <dbl>
## 1 9am 193.
## 2 10am 157.

nig = 193 — 36 - section__10am Since 193 — 157 = 36

Nate Wells Linear Regression with Categorical Variables Math 141,



Regression for Binary Categorical Variables
00000000000 e

Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:
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Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- 1lm(mg ~ section, caffeine)
get_regression_table(caf_mod)

term estimate  std_error  statistic p_value lower_ci upper_ci
intercept 193.333 38.224 5.058 0.000 116.080 270.587
sectionl0am -36.429 54.057 -0.674 0.504  -145.681 72.824
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Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- 1lm(mg ~ section, caffeine)
get_regression_table(caf_mod)

term estimate  std_error  statistic p_value lower_ci upper_ci
intercept 193.333 38.224 5.058 0.000 116.080 270.587
sectionl0am -36.429 54.057 -0.674 0.504  -145.681 72.824

® But R made a choice here about which level to code as a 0 and which to code as a 1

® It coded the 9am section as 0 and the 10am section as 1 (how do | know?)
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Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- 1lm(mg ~ section, caffeine)
get_regression_table(caf_mod)

term estimate  std_error  statistic p_value lower_ci upper_ci
intercept 193.333 38.224 5.058 0.000 116.080 270.587
sectionl0am -36.429 54.057 -0.674 0.504  -145.681 72.824

® But R made a choice here about which level to code as a 0 and which to code as a 1
® It coded the 9am section as 0 and the 10am section as 1 (how do | know?)

® In general, R will code the first level of a factor as 0, and the second as a 1.
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Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- 1lm(mg ~ section, caffeine)
get_regression_table(caf_mod)

term estimate  std_error  statistic p_value lower_ci upper_ci
intercept 193.333 38.224 5.058 0.000 116.080 270.587
sectionl0am -36.429 54.057 -0.674 0.504  -145.681 72.824

® But R made a choice here about which level to code as a 0 and which to code as a 1
® It coded the 9am section as 0 and the 10am section as 1 (how do | know?)
® In general, R will code the first level of a factor as 0, and the second as a 1.

® |f no order is provided, it will use alphabetical order.
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Finding Least Squaress Line (using R)

® But we can also use 1m in R.

® R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- lm(mg ~ section, caffeine)
get_regression_table(caf_mod)

term estimate  std_error  statistic p_value lower_ci upper_ci
intercept 193.333 38.224 5.058 0.000 116.080 270.587
sectionl0am -36.429 54.057 -0.674 0.504  -145.681 72.824

® But R made a choice here about which level to code as a 0 and which to code as a 1
® It coded the 9am section as 0 and the 10am section as 1 (how do | know?)
® In general, R will code the first level of a factor as 0, and the second as a 1.
® If no order is provided, it will use alphabetical order.

® If you want to change the order, you need to mutate the data frame using fct_relevel
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More Classes

® Suppose we also have data on caffeine consumption from a 3rd section of math 141.
## # A tibble: 63 x 2

## section mg

:: ) ;Ifzt>10 <db1; caffeine3 %>}, group_by(section) %>%
ate_ am .

# 2 Nate. 9am 550 summarize ( mean (mg) , sd(mg))

## 3 Nate_10am 0 ## # A tibble: 3 x 3

:: g gf‘t;—;oaﬂ‘ g ## section mean_mg sd_mg

M N;ze—gi 10 ##  <fct> <dbl> <dbl>

P Nate:Qam 200 ## 1 Nick_9am 195. 164.

#6 8 Nick 9am 100 ## 2 Nate_9am 193. 177.

## 9 Nate_10am 200 ## 3 Nate_10am 157. 174.

## 10 Nate_9am 100

## # ... with 53 more rows

® Goal: Create a linear model that takes section as input and returns a predicted mg
as output.
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Multi-level Model, First Attempt

® We could try to recode levels by converting to the integers 0, 1 and 2.
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Multi-level Model, First Attempt

® We could try to recode levels by converting to the integers 0, 1 and 2.

® But this would be very problematic for creating the line of best fit. Why?

Nate Wells Linear Regression with Categorical Variables Math 141,



Multi-level Model, First Attempt

Linear Regression with Multi-level Categorical Variables

[e]e] lele]elele)

® We could try to recode levels by converting to the integers 0, 1 and 2.

® But this would be very problematic for creating the line of best fit. Why?
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Multi-level Model, First Attempt

® We could try to recode levels by converting to the integers 0, 1 and 2.

® But this would be very problematic for creating the line of best fit. Why?
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:

® section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:

® section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.

® section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:

® section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
® section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.

® section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:

® section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
® section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
® section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.

® Note that for a given student, exactly one of these variables is 1, and the other two are 0.
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One-Hot Encoding

® Instead of defining a single numeric variable to encode all levels, we need a binary
indicator variable for each level:

® section_Nick_9am is 1 if the student is in Nick's 9am section, and 0 otherwise.
® section_Nate_9am is 1 if the student is in Nate's 9am section, and 0 otherwise.
® section_Nate_10am is 1 if the student is in Nate's 10am section, and 0 otherwise.

® Note that for a given student, exactly one of these variables is 1, and the other two are 0.

caffeine3 <- caffeine3 %> mutate(

ifelse(section == "Nick_9am", 1, 0),
ifelse(section == "Nate_9am", 1, 0),
ifelse(section == "Nate_10am", 1, 0))

## # A tibble: 63 x 5

## section section_Nick_9am section_Nate_Oam section_Nate_10am mg
##  <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Nick_9am 1 0 0 140
## 2 Nate_10am 0 0 1 600
## 3 Nate_10am 0 0 1 0
## 4 Nick_9am 1 0 0 150
## 5 Nate_9am 0 1 0 50
## # . with 58 more rows
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Multi-level Model, Second Attempt

® We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am
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Multi-level Model, Second Attempt

® We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
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Multi-level Model, Second Attempt

® We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
® What is the predicted caffeine consumption for a student in ...
® Nate's 9am section?
® Nate's 10am section?

® Nick's 9am section?
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Multi-level Model, Second Attempt

We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
® What is the predicted caffeine consumption for a student in ...
® Nate's 9am section?
® Nate's 10am section?

® Nick's 9am section?

Where did the indicator for Nick's 9am section go in the formula for the model?7?
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Multi-level Model, Second Attempt

We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
® What is the predicted caffeine consumption for a student in ...
® Nate's 9am section?
® Nate's 10am section?

® Nick's 9am section?

Where did the indicator for Nick's 9am section go in the formula for the model?7?

® Nick's 9am section is treated as the baseline, and so does not need its own indicator.
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Multi-level Model, Second Attempt

We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
® What is the predicted caffeine consumption for a student in ...
® Nate's 9am section?
® Nate's 10am section?

® Nick's 9am section?

Where did the indicator for Nick's 9am section go in the formula for the model?7?
® Nick's 9am section is treated as the baseline, and so does not need its own indicator.

® The intercept is the prediction for the baseline.
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Multi-level Model, Second Attempt

® We can define a multivariate linear model for mg as a function of section by

mg = [y + B1 - section_ Nate_9am + S, - section_ Nate_ 10am

® For example, suppose

mg = 195 — 1.5 - section_ Nate_ 9am — 38 - section_ Nate__10am
® What is the predicted caffeine consumption for a student in ...
® Nate's 9am section?
® Nate's 10am section?

® Nick's 9am section?

Where did the indicator for Nick's 9am section go in the formula for the model?7?
® Nick's 9am section is treated as the baseline, and so does not need its own indicator.
® The intercept is the prediction for the baseline.

® Slopes on the other indicator variables correspond to differences from the baseline.
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Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R
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Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R

caf_mod3 <- lm(mg ~ section, caffeine3)
get_regression_table(caf_mod3)
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Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R

caf_mod3 <- lm(mg ~ section, caffeine3)
get_regression_table(caf_mod3)

term estimate std_error statistic p_value lower_ci upper_ci
intercept 194.762 37.431 5.203 0.000 119.890 269.634
sectionNate_9am -1.429 52.935 -0.027 0.979 -107.314 104.457
sectionNate_10am -37.857 52.935 -0.715 0.477 -143.742 68.028
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Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R

caf_mod3 <- lm(mg ~ section, caffeine3)
get_regression_table(caf_mod3)

term estimate std_error statistic p_value lower_ci upper_ci
intercept 194.762 37.431 5.203 0.000 119.890 269.634
sectionNate_9am -1.429 52.935 -0.027 0.979 -107.314 104.457
sectionNate_10am -37.857 52.935 -0.715 0.477 -143.742 68.028

® | et's compare to some statistics we've already computed:

section mean_mg  diff_from_baseline
Nick_9am 194.7619 0.000000
Nate_9am 193.3333 -1.428571
Nate_10am 156.9048 -37.857143
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Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R

caf_mod3 <- lm(mg ~ section, caffeine3)
get_regression_table(caf_mod3)

term estimate std_error statistic p_value lower_ci upper_ci
intercept 194.762 37.431 5.203 0.000 119.890 269.634
sectionNate_9am -1.429 52.935 -0.027 0.979 -107.314 104.457
sectionNate_10am -37.857 52.935 -0.715 0.477 -143.742 68.028

® | et's compare to some statistics we've already computed:

section mean_mg  diff_from_baseline
Nick_9am 194.7619 0.000000
Nate_9am 193.3333 -1.428571
Nate_10am 156.9048 -37.857143

® The intercept is the mean value of the response for the baseline level.

Nate Wells Linear Regression with Categorical Variables



Linear Regression with Multi-level Categorical Variables
00000080

Multi-level Linear Model in R

® As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m
function to create linear models for quantitative ~ multilevel in R

caf_mod3 <- lm(mg ~ section, caffeine3)
get_regression_table(caf_mod3)

term estimate std_error statistic p_value lower_ci upper_ci
intercept 194.762 37.431 5.203 0.000 119.890 269.634
sectionNate_9am -1.429 52.935 -0.027 0.979 -107.314 104.457
sectionNate_10am -37.857 52.935 -0.715 0.477 -143.742 68.028

® | et's compare to some statistics we've already computed:

section mean_mg  diff_from_baseline
Nick_9am 194.7619 0.000000
Nate_9am 193.3333 -1.428571
Nate_10am 156.9048 -37.857143

® The intercept is the mean value of the response for the baseline level.

® The slopes are the difference in mean values between the indicated level and the baseline.
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Residuals for Multi-level Models

® As with simple linear regression for quantitative ~ quantitative, we can get residuals
for each observation:
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Residuals for Multi-level Models

® As with simple linear regression for quantitative ~ quantitative, we can get residuals
for each observation:
get_regression_points(caf_mod3)
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Residuals for Multi-level Models

® As with simple linear regression for quantitative ~ quantitative, we can get residuals
for each observation:
get_regression_points(caf_mod3)

## # A tibble: 63 x 5

## ID mg section mg_hat residual
## <int> <dbl> <fct> <dbl> <dbl>
## 1 57 225 Nick_9am 195. 30.2
## 2 4 150 Nate_9am 193. -43.3
## 3 39 0 Nate_10am  157. -157.
## 4 1 550 Nate_9am 193. 357.
## 5 34 0 Nate_10am  157.  -157.
## 6 23 0 Nate_10am  157.  -157.
# 7 43 0 Nick_9am 195. -195.
## 8 14 40 Nate_9am 193. -153.
## 9 18 400 Nate_9am 193. 207.
## 10 51 100 Nick_9am 195. -94.8
## # ... with 53 more rows
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Residuals for Multi-level Models

® As with simple linear regression for quantitative ~ quantitative, we can get residuals
for each observation:
get_regression_points(caf_mod3)

## # A tibble: 63 x 5

## ID mg section mg_hat residual
## <int> <dbl> <fct> <dbl> <dbl>
## 1 57 225 Nick_9am 195. 30.2
## 2 4 150 Nate_9am 193. -43.3
## 3 39 0 Nate_10am  157. -157.
## 4 1 550 Nate_9am 193. 357.
## 5 34 0 Nate_10am  157.  -157.
## 6 23 0 Nate_10am  157.  -157.
# 7 43 0 Nick_9am 195. -195.
## 8 14 40 Nate_9am 193. -153.
## 9 18 400 Nate_9am 193. 207.
## 10 51 100 Nick_9am 195. -94.8
## # ... with 53 more rows

® Recall, residuals are the difference between the observed and predicted values
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Residuals for Multi-level Models

® As with simple linear regression for quantitative ~ quantitative, we can get residuals
for each observation:
get_regression_points(caf_mod3)

## # A tibble: 63 x 5

## ID mg section mg_hat residual
## <int> <dbl> <fct> <dbl> <dbl>
## 1 57 225 Nick_9am 195. 30.2
## 2 4 150 Nate_9am 193. -43.3
## 3 39 0 Nate_10am  157. -157.
## 4 1 550 Nate_9am 193. 357.
## 5 34 0 Nate_10am  157.  -157.
## 6 23 0 Nate_10am  157.  -157.
# 7 43 0 Nick_9am 195. -195.
## 8 14 40 Nate_9am 193. -153.
## 9 18 400 Nate_9am 193. 207.
## 10 51 100 Nick_9am 195. -94.8
## # ... with 53 more rows

® Recall, residuals are the difference between the observed and predicted values

® Here, residual tells us the difference between a student’s actual mg consumed and the
mean mg for that student’s class.
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