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Multiple Linear Regression Application of Multiple Linear Regression

Outline

In this lecture, we will. . .
• Discuss framework for multiple linear regression and compare to simple linear
regression

• Use the moderndive packages to create multiple regression models.
• Investigate the geometry of multilinear regression models
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Multiple Linear Regression Application of Multiple Linear Regression

Section 1

Multiple Linear Regression
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Multiple Linear Regression Application of Multiple Linear Regression

Many Simple Linear Regression Models

• Often, several explanatory variables could be used to predict values of a single
response variable.

• Response: Penguin bill length
• Potential Explanatory: body mass, species, bill depth, age
• Response: Home prices
• Potential Explanatory: square feet, # bedrooms, # bathrooms, neighborhood
• Response: State graduation rate
• Potential Explanatory: poverty rate, per capita tax revenue, region, teen pregnancy rate

• In each case, we could create simple linear regression models for each explanatory
variable.

• But the results may be misleading:
• Some individual models may be stronger than others.
• Results may be correlated, so we can’t easily quantify uncertainty

• Could we get better predictive power by including all explanatory variables in the same
model?
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Multiple Linear Regression Application of Multiple Linear Regression

Visualizing Multiple Quantitative Variables

Goal: Visualize quantitative response variable and 2 quantitative explanatory variables.

• Option 1: 2D scatterplot with explanatory variables on x and y axes, color for response:
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2D scatterplot with color for response
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Multiple Linear Regression Application of Multiple Linear Regression

Visualizing Multiple Quantitative Variables

Goal: Visualize quantitative response variable and 2 quantitative explanatory variables.

• Option 2: 3D scatterplot with explanatory variables on x and y axes, response on z axis:

• An interactive 3D plot is available on schedule page of course website.
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Multiple Linear Regression Application of Multiple Linear Regression

Multiple Regression Model

• In a simple linear regression model (SLR), we express the response variable Y as a
linear function of one explanatory variable X :

Ŷ = β0 + β1 · X

• In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of p explanatory variables X1,X2, . . . ,Xp:

Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βp · Xp

• In the MLR model, explanatory variables can either be quantitative or binary
categorical

• If we want to use categoricals with more than 2 levels, we need to first create indicators
for each level.

• We do lose a nice 2D graphical representation (although higher dimensional graphics
are possible), but statistical software allows us to estimate coefficients of the model.
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Multiple Linear Regression Application of Multiple Linear Regression

Finding Parameters

• To perform simple linear regression, we found a formula for the model that minimized
the sum of squared residuals:

Minimize
n∑

i=1

e2i where e = y − ŷ = y − (β0 + β1x)

• To create an MLR model, we do the exact same thing!
• That is, we find the model involving sums of the variables that minimize the squared

sum of residuals:

Minimize
n∑

i=1

e2i where e = y − ŷ = y − (β0 + β1x1 + β2x2 + · · · + βpxp)

• The only difference is that instead of the equation describing a line, the equation
describes a “plane” in higher dimensional space.

• There is a formula for the coefficients of the multilinear model. But we will use lm in
R, rather than the formula.

mlr_mod <- lm(y ~ x1 + x2 + ... + xp, data = my_data)
get_regression_table(mlr_mod)
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Multiple Linear Regression Application of Multiple Linear Regression

Visualizing Regression Plane

• The regression plane in 3D space minimizes the sum of squared residuals:

• An interactive 3D plot is available on schedule page of course website.
• Regression Equation: ŷ = −0.8 + 0.67x1 + 0.83x2
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Multiple Linear Regression Application of Multiple Linear Regression

Interpretation

• Consider a multilinear model with equation

Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βp · Xp

• The intercept β0 of the MLR is the predicted value of the response when all
explanatory values take the value 0

• Whether it is reasonable to make this prediction depends on whether it is plausible for
all explanatory variables to be 0.

• A slope βi is the average change in the response Y per 1 unit change in Xi , while
holding all other variables in the model constant.

• Positive values of βi indicate that increases in the corresponding explanatory variable Xi
are associated with increases in the response, while other variables are held constant.

• The multilinear model allows us to isolate the effect of one variable on the response
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Ŷ = β0 + β1 · X1 + β2 · X2 + · · · + βp · Xp

• The intercept β0 of the MLR is the predicted value of the response when all
explanatory values take the value 0

• Whether it is reasonable to make this prediction depends on whether it is plausible for
all explanatory variables to be 0.

• A slope βi is the average change in the response Y per 1 unit change in Xi , while
holding all other variables in the model constant.

• Positive values of βi indicate that increases in the corresponding explanatory variable Xi
are associated with increases in the response, while other variables are held constant.

• The multilinear model allows us to isolate the effect of one variable on the response

Nate Wells Multiple Linear Regression Math 141, 2/25/22 10 / 20



Multiple Linear Regression Application of Multiple Linear Regression

Interpretation

• Consider a multilinear model with equation
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Multiple Linear Regression Application of Multiple Linear Regression

Section 2

Application of Multiple Linear Regression
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Multiple Linear Regression Application of Multiple Linear Regression

House Prices

• What factors determine the sale price of a house?

• We’ll consider a subset of 1000 homes from the house_price dataset in the
moderndive package, which contains sale prices for homes in King County, WA between
May 2014 and May 2015.

## Rows: 1,000
## Columns: 17
## $ price <dbl> 241, 262, 765, 430, 215, 675, 885, 907, 395, 650, 300, 6~
## $ bedrooms <dbl> 3, 4, 4, 2, 3, 2, 4, 3, 3, 3, 2, 3, 4, 4, 2, 3, 5, 3, 3,~
## $ bathrooms <dbl> 1.8, 2.0, 1.0, 2.2, 2.0, 1.8, 2.5, 1.5, 1.5, 2.8, 1.5, 2~
## $ sqft_living <dbl> 1350, 1540, 2520, 1040, 1280, 2140, 2830, 1340, 1120, 16~
## $ sqft_lot <dbl> 7588, 5110, 5500, 1516, 6994, 5000, 5000, 6000, 7000, 13~
## $ floors <dbl> 1.0, 1.0, 1.5, 2.0, 1.0, 1.0, 2.0, 1.5, 1.0, 3.0, 1.0, 2~
## $ waterfront <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
## $ view <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0,~
## $ condition <dbl> 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3,~
## $ grade <dbl> 7, 7, 8, 8, 7, 7, 9, 9, 7, 9, 6, 9, 7, 8, 8, 7, 9, 6, 7,~
## $ sqft_above <dbl> 1350, 1540, 1820, 1040, 1280, 1000, 2830, 1340, 1120, 13~
## $ sqft_basement <dbl> 0, 0, 700, 0, 0, 1140, 0, 0, 0, 320, 480, 0, 890, 0, 0, ~
## $ yr_built <dbl> 1993, 1957, 1912, 2008, 1991, 1930, 1995, 1927, 1955, 20~
## $ yr_renovated <dbl> 0, 0, 0, 0, 0, 1991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ zipcode <dbl> 98010, 98118, 98144, 98122, 98038, 98112, 98105, 98105, ~
## $ lat <dbl> 47, 48, 48, 48, 47, 48, 48, 48, 48, 48, 48, 48, 48, 47, ~
## $ long <dbl> -122, -122, -122, -122, -122, -122, -122, -122, -122, -1~
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## $ waterfront <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
## $ view <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0,~
## $ condition <dbl> 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3,~
## $ grade <dbl> 7, 7, 8, 8, 7, 7, 9, 9, 7, 9, 6, 9, 7, 8, 8, 7, 9, 6, 7,~
## $ sqft_above <dbl> 1350, 1540, 1820, 1040, 1280, 1000, 2830, 1340, 1120, 13~
## $ sqft_basement <dbl> 0, 0, 700, 0, 0, 1140, 0, 0, 0, 320, 480, 0, 890, 0, 0, ~
## $ yr_built <dbl> 1993, 1957, 1912, 2008, 1991, 1930, 1995, 1927, 1955, 20~
## $ yr_renovated <dbl> 0, 0, 0, 0, 0, 1991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
## $ zipcode <dbl> 98010, 98118, 98144, 98122, 98038, 98112, 98105, 98105, ~
## $ lat <dbl> 47, 48, 48, 48, 47, 48, 48, 48, 48, 48, 48, 48, 48, 47, ~
## $ long <dbl> -122, -122, -122, -122, -122, -122, -122, -122, -122, -1~
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Multiple Linear Regression Application of Multiple Linear Regression

House Price and Size

• Consider price as function of square footage, and above ground square footage
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ˆPrice = 236.53 + 0.13 · abv R = 0.45

• Both models have some explanatory power for price.
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Multiple Linear Regression Application of Multiple Linear Regression

The Regression Plane

• How do total square footage and above ground square footage together explain price?
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• What does the upper diagonal line correspond to?
• Which type of houses tend to have the highest price?
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Multiple Linear Regression Application of Multiple Linear Regression

Multiple Regression for Price

• Let’s find the MLR model
house_sqft_abv_mod <-lm(price ~ sqft_living + sqft_above, data = house)

And investigate the regression table
get_regression_table(house_sqft_abv_mod)

## # A tibble: 3 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 161. 14.8 10.9 0 132. 190.
## 2 sqft_living 0.172 0.014 12.6 0 0.145 0.199
## 3 sqft_above -0.017 0.014 -1.17 0.243 -0.045 0.011

• Which gives us the regression equation:

ˆPrice = 160.924 + 0.172 · sqft − 0.017 · abv

• Increasing total footage 1 ft, while keeping above ground fixed, increases Price by an average
of $0.1724.

• Increasing above ground footage 1 ft, while keeping total footage fixed, decreases Price by an
average of $0.017.
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Multiple Linear Regression Application of Multiple Linear Regression

Comparing MLR and SLR

Wait. . .

• The SLR for Price and Above Ground Square Footage was

ˆPrice = 236.53 + 0.13 · abv
• That is, increasing above ground square footage by 1 ft INCREASED price by $0.13.

• But the MLR is

ˆPrice = 160.924 + 0.172 · sqft − 0.017 · abv
• Not only has MLR given us a new rate of change, but it’s completely switched the

direction!

• How is this possible?
• Basements are expensive in Seattle. Why?
• Seattle is hilly, with firm clay soil, making it more difficult to excavate
• Could basements be associated with other desirable housing attributes?
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Multiple Linear Regression Application of Multiple Linear Regression

Correlated Variables

• Let’s consider the relationship between above ground and total square footage

Y = 135  +0.8X

R = 0.83
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Total vs Above Ground Square Footage

• In a vacuum, as total square footage increases, so too does above ground square footage
• So in the SLR model, when we look at change in price due to increase in above ground

square footage, we are implicitly also increasing total square footage too.
• We could say total square footage is a confounding variable in the SLR model.
• The MLR model allows us to control for this confounding variable
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Multiple Linear Regression Application of Multiple Linear Regression

Another Visual Perspective

• Let’s convert above ground square footage to a categorical variable (by grouping into
7 levels with roughly the same number of houses each)
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Price vs Above Ground Square Footage, by Total

• While price has a positive overall relationship with above ground square footage, within each
band of total square footage, price has a weakly negative relationship

• This is an example of Simpson’s Paradox: a trend present in the aggregate data can
reverse itself when data is considered by group.
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Multiple Linear Regression Application of Multiple Linear Regression

Assessing Strength of Multilinear Models

• For SLR, we used the correlation coefficient R to assess model strength.

• We also saw that R2 had a natural interpretation: the percentage of variability in the
response due to linear relationship with explanatory variable.

• For MLR, we cannot define the correlation coefficient, because we have multiple
explanatory variables.

• However, we can still define R2!

R2 = variability in response explained by model
variability in response =

s2y − s2res

s2y

• Usually, we use software to compute R2 for multivariate models
house_sqft_abv_mod <- lm(price ~ sqft_living + sqft_above, data = house)
get_regression_summaries(house_sqft_abv_mod)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.309 0.308 24397. 156. 156. 223. 0 2 1000
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Multiple Linear Regression Application of Multiple Linear Regression

Bigger Models

• Can we build a multivariate model that explains a higher proportion of the variability in price?

price_big_mod <- lm(price ~ bedrooms + bathrooms + sqft_living + sqft_above + sqft_lot +
view + condition + yr_built, data= house)

get_regression_table(price_big_mod)

## # A tibble: 9 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3661. 404. 9.06 0 2868. 4453.
## 2 bedrooms -19.7 6.82 -2.88 0.004 -33.0 -6.29
## 3 bathrooms 30.0 11.2 2.67 0.008 7.91 52.0
## 4 sqft_living 0.158 0.016 9.93 0 0.127 0.189
## 5 sqft_above 0.039 0.014 2.74 0.006 0.011 0.066
## 6 sqft_lot -0.014 0.002 -8.57 0 -0.017 -0.011
## 7 view 50.4 8.61 5.85 0 33.5 67.3
## 8 condition 11.8 7.48 1.58 0.114 -2.84 26.5
## 9 yr_built -1.78 0.205 -8.67 0 -2.18 -1.38
get_regression_summaries(price_big_mod)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.434 0.429 19987. 141. 142. 94.9 0 8 1000
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