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Summarizing with dplyr Data Wrangling Data Decomposition

Outline

In this lecture, we will. . .

• Efficiently summarize data with the summarize function
• Discuss data wrangling and survey the dplyr verbs
• Practice decomposing data using the “grammar of wrangling”
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Summarizing with dplyr Data Wrangling Data Decomposition

Section 1

Summarizing with dplyr
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Summarizing with dplyr Data Wrangling Data Decomposition

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

## [1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame
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Summarizing with dplyr Data Wrangling Data Decomposition

The summarize function

The summarize function takes a data frame, applies specified summary functions to 1 or
more columns, and returns a data frame of the results.

library(dplyr)
summarize(

biketown,
Mean_Distance = mean(Distance_Miles),
SD_Distance = sd(Distance_Miles),
Median_StartHour = median(StartHour),
IQR_StartHour = IQR(StartHour)

)

## # A tibble: 1 x 4
## Mean_Distance SD_Distance Median_StartHour IQR_StartHour
## <dbl> <dbl> <int> <dbl>
## 1 2.04 1.95 15 7

• Note that code is separated by line breaks for improved readability
• New column names can be arbitrary (but it’s nice if they are informative)
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The summarize function

The summarize function takes a data frame, applies specified summary functions to 1 or
more columns, and returns a data frame of the results.
library(dplyr)
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biketown,
These = mean(Distance_Miles),
Can = sd(Distance_Miles),
Be = median(StartHour),
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)
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• Note that code is separated by line breaks for improved readability
• New column names can be arbitrary (but it’s nice if they are informative)
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Summarizing with dplyr Data Wrangling Data Decomposition

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:
distance_summary <- summarise(biketown,

mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

## [1] 2.044768
distance_summary$sd_dist

## [1] 1.950804
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Section 2

Data Wrangling
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Summarizing with dplyr Data Wrangling Data Decomposition

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.
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Summarizing with dplyr Data Wrangling Data Decomposition

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated
manipulations.

• These verbs form a “grammar” of Data Manipulation.
• So even if you aren’t using R, they represent the basic components you would think

about when manipulating data.
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Summarizing with dplyr Data Wrangling Data Decomposition

A long time ago, in a galaxy far, far away. . .
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Summarizing with dplyr Data Wrangling Data Decomposition

Star Wars: The Rise of Skywrangler

We’ll investigate the starwars data set from the dplyr package
head(starwars)

## # A tibble: 6 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Luke Sk~ 172 77 blond fair blue 19 male mascu~
## 2 C-3PO 167 75 <NA> gold yellow 112 none mascu~
## 3 R2-D2 96 32 <NA> white, bl~ red 33 none mascu~
## 4 Darth V~ 202 136 none white yellow 41.9 male mascu~
## 5 Leia Or~ 150 49 brown light brown 19 fema~ femin~
## 6 Owen La~ 178 120 brown, grey light blue 52 male mascu~
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
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Summarizing with dplyr Data Wrangling Data Decomposition

filter()

filter(starwars, height < 100)

## # A tibble: 7 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 R2-D2 96 32 <NA> white, bl~ red 33 none mascu~
## 2 R5-D4 97 32 <NA> white, red red NA none mascu~
## 3 Yoda 66 17 white green brown 896 male mascu~
## 4 Wicket S~ 88 20 brown brown brown 8 male mascu~
## 5 Dud Bolt 94 45 none blue, grey yellow NA male mascu~
## 6 Ratts Ty~ 79 15 none grey, blue unknown NA male mascu~
## 7 R4-P17 96 NA none silver, r~ red, blue NA none femin~
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
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Summarizing with dplyr Data Wrangling Data Decomposition

select()

select(starwars, name, height, mass, homeworld)

## # A tibble: 87 x 4
## name height mass homeworld
## <chr> <int> <dbl> <chr>
## 1 Luke Skywalker 172 77 Tatooine
## 2 C-3PO 167 75 Tatooine
## 3 R2-D2 96 32 Naboo
## 4 Darth Vader 202 136 Tatooine
## 5 Leia Organa 150 49 Alderaan
## 6 Owen Lars 178 120 Tatooine
## 7 Beru Whitesun lars 165 75 Tatooine
## 8 R5-D4 97 32 Tatooine
## 9 Biggs Darklighter 183 84 Tatooine
## 10 Obi-Wan Kenobi 182 77 Stewjon
## # ... with 77 more rows
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summarize()

summarize(starwars,
Avg_Height = mean(height, na.rm = T),
Median_Height = median(height, na.rm = T))

## # A tibble: 1 x 2
## Avg_Height Median_Height
## <dbl> <int>
## 1 174. 180
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group_by()

Link data according to levels of a variable. Usually followed by summarize()

grouped_sw <- group_by(starwars, gender)
summarize(grouped_sw, Avg_Height = mean(height, na.rm = T))

## # A tibble: 3 x 2
## gender Avg_Height
## <chr> <dbl>
## 1 feminine 165.
## 2 masculine 177.
## 3 <NA> 181.
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Summarizing with dplyr Data Wrangling Data Decomposition

mutate()

mutated_sw <- mutate(starwars, height_ft = height/30.48)
select(mutated_sw, name, height_ft, everything())

## # A tibble: 87 x 15
## name height_ft height mass hair_color skin_color eye_color birth_year sex
## <chr> <dbl> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
## 1 Luke~ 5.64 172 77 blond fair blue 19 male
## 2 C-3PO 5.48 167 75 <NA> gold yellow 112 none
## 3 R2-D2 3.15 96 32 <NA> white, bl~ red 33 none
## 4 Dart~ 6.63 202 136 none white yellow 41.9 male
## 5 Leia~ 4.92 150 49 brown light brown 19 fema~
## 6 Owen~ 5.84 178 120 brown, gr~ light blue 52 male
## 7 Beru~ 5.41 165 75 brown light blue 47 fema~
## 8 R5-D4 3.18 97 32 <NA> white, red red NA none
## 9 Bigg~ 6.00 183 84 black light brown 24 male
## 10 Obi-~ 5.97 182 77 auburn, w~ fair blue-gray 57 male
## # ... with 77 more rows, and 6 more variables: gender <chr>, homeworld <chr>,
## # species <chr>, films <list>, vehicles <list>, starships <list>
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arrange()

Sort the rows

arrange(starwars,mass)

## # A tibble: 87 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Ratts T~ 79 15 none grey, blue unknown NA male mascu~
## 2 Yoda 66 17 white green brown 896 male mascu~
## 3 Wicket ~ 88 20 brown brown brown 8 male mascu~
## 4 R2-D2 96 32 <NA> white, bl~ red 33 none mascu~
## 5 R5-D4 97 32 <NA> white, red red NA none mascu~
## 6 Sebulba 112 40 none grey, red orange NA male mascu~
## 7 Dud Bolt 94 45 none blue, grey yellow NA male mascu~
## 8 Padmé A~ 165 45 brown light brown 46 fema~ femin~
## 9 Wat Tam~ 193 48 none green, gr~ unknown NA male mascu~
## 10 Sly Moo~ 178 48 none pale white NA <NA> <NA>
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## # films <list>, vehicles <list>, starships <list>
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## 6 Sebulba 112 40 none grey, red orange NA male mascu~
## 7 Dud Bolt 94 45 none blue, grey yellow NA male mascu~
## 8 Padmé A~ 165 45 brown light brown 46 fema~ femin~
## 9 Wat Tam~ 193 48 none green, gr~ unknown NA male mascu~
## 10 Sly Moo~ 178 48 none pale white NA <NA> <NA>
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## # films <list>, vehicles <list>, starships <list>
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Summarizing with dplyr Data Wrangling Data Decomposition

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together

• Suppose you want to perform a sequence of operations on a data frame df with
several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed
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Summarizing with dplyr Data Wrangling Data Decomposition

Pipe Composition

• Instead, we can obtain the same output using the pipe:

df %>%
select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to
1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)
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Section 3

Data Decomposition
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Math 141 Survey

year historian alcohol hogwarts hot_dog college_app dog_pants social economic

Sophomore Herodotus 1.0 Ravenclaw Maybe 5 Back legs 4 5
Sophomore Thucydides 1.0 Ravenclaw No 8 Back legs 3 3
Sophomore Thucydides 2.0 Gryffindor No 10 Back legs 5 5
Sophomore Thucydides 0.0 Hufflepuff No 11 Back legs 4 4
Sophomore None 1.0 Slytherin No 5 Back legs 3 3
Junior Herodotus 5.0 Slytherin No 2 Back legs 5 3
Sophomore Herodotus 0.0 Ravenclaw No 2 Back legs 3 4
Senior Herodotus 2.0 Slytherin No 9 All legs 1 1
Junior Herodotus 1.0 Hufflepuff Yes 6 All legs 2 2
Sophomore Thucydides 3.0 Gryffindor Yes 1 Back legs 2 4
Junior Herodotus 0.0 Ravenclaw No 3 All legs 6 7
Sophomore Herodotus 1.0 Gryffindor Yes 7 All legs 1 6
Sophomore Herodotus 3.0 Ravenclaw Yes 20 All legs 4 5
Sophomore Herodotus 4.0 Gryffindor No 16 All legs 3 2
Junior Herodotus 0.0 Ravenclaw No 3 Back legs 2 2
Freshman Thucydides 0.0 NA Yes 10 All legs 5 6
Junior Thucydides 0.1 Gryffindor No 12 Back legs 3 1
Sophomore Thucydides 0.5 Slytherin NA 1 NA 3 8
Freshman Herodotus 2.0 Gryffindor Yes 3 Back legs 5 7
Sophomore Herodotus 0.0 Slytherin No 13 Back legs 3 4
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