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Outline

In this lecture, we will. . .

• Use bootstrapping as means of creating confidence intervals
• Interpret confidence intervals
• Implement the infer package to automate bootstrapped confidence intervals
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Section 1

Bootstrapping Confidence Intervals
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Reproduction Rate for Covid-19

Researchers are interested in the COVID-19 reproduction rate (the average number of
individuals each infected person further infects)

• We have a sample of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects.

## infected n
## 1 0 5
## 2 1 13
## 3 2 14
## 4 3 12
## 5 4 5
## 6 6 1
## mean_infected
## 1 2.06
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Distribution of Sample of Number of Individuals Further Infected

• Goal: Create an interval of plausible values for the reproduction rate.
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Bootstrap Reproduction Rate

• To create a 95% confidence interval:

1 Create the bootstrap samples:
set.seed(121)
bootstrap_samples <- covid %>%

rep_sample_n(size = 50, replace = TRUE, reps = 5000)

2 Compute bootstrap statistics:
bootstrap_stats <- bootstrap_samples %>%

group_by(replicate) %>%
summarize(x_bar = mean(infected))

3 Graph the bootstrap distribution:
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Bootstrap Distribution for Reproduction Rate, n = 50

4 Estimate the standard error
bootstrap_stats %>% summarize(SE = sd(x_bar))

## # A tibble: 1 x 1
## SE
## <dbl>
## 1 0.181

5 The 95% confidence interval is
x̄ ± 2 · SE 2.06 ± 2 · 0.181
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Generalized Confidence Intervals

• In the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter

• But suppose we instead want a different success rate for our estimation method
• Or suppose we want to create interval estimates for sampling distributions that are not

bell-shaped

• We can make these modifications again using the bootstrap approximation to the
sampling distribution

General Confidence Intervals
The C% confidence interval for a parameter is an interval estimate that is computed from
sample data by a method that captures the parameter for C% of all samples.
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Review: Percentiles and Quantiles

• For a number k between 0 and 100, the kth percentile of a distribution is the value
so that 5% of the data is less than or equal to that value.

• The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.

• For a number p between 0 and 1, the p quantile of a distribution is the value so that
a proportion p of the data is less than or equal to that value.

• The median is the 0.5 quantile of a distribution, and the 1st/3rd quartiles are the 0.25
and 0.75 quantiles, respectively.
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Quantiles and Percentiles

• By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile
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• But this means that 95% of the data is between the .025 and the .975 quantiles
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Quantiles and Percentiles

• By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
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• But this means that 95% of the data is between the .025 and the .975 quantiles

• For a sampling distribution that is approximately bell-shaped, the .025 quantile is about
2 · SE below the mean, and the .975 quantile is about 2 · SE above the mean
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• But this means that 95% of the data is between the .025 and the .975 quantiles
• For a sampling distribution that is approximately bell-shaped, the .025 quantile is about

2 · SE below the mean, and the .975 quantile is about 2 · SE above the mean
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The Percentile Method

• Suppose we want to construct a 90% confidence interval for the reproduction rate

• Instead of adding/subtracting 2 ∗ SE , find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values
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• We can use the quantile function in R to calculate the .05 and .95 quantiles
quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.36
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• Our 90% confidence interval is therefore 1.76 to 2.36
quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.36
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Precision

How can we increase the precision of our confidence interval (i.e. decrease the margin of
error)?

• Increase sample size.
• The standard deviation of the sampling distribution decreases as sample size increases.

More sample means are closer to the true parameter

• Decrease confidence level.
• The margin of error is determined by the percentiles. A 95% confidence interval is

formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.
• Decreasing confidence level brings the percentiles closer to the 50th percentile,

decreasing the width of the interval.
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Section 2

Confidence Interval Misunderstandings
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Common Confidence Interval Misunderstandings

Suppose we wish to estimate the number of hours a Reed student sleeps on a typical night.
We obtain the following 95% confidence interval:(7.86, 8.34)

1 A 95% confidence interval does not contain 95% of observations in the population.
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Common Confidence Interval Misunderstandings

2 A 95% confidence interval does not mean that 95% of all sample means fall within
the given range.

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Sampling Distribution

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Bootstrap Distribution

Nate Wells Confidence Intervals II Math 141, 3/11/21 16 / 36



Bootstrapping Confidence Intervals Confidence Interval Misunderstandings The infer package

Common Confidence Interval Misunderstandings

2 A 95% confidence interval does not mean that 95% of all sample means fall within
the given range.

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Sampling Distribution

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Bootstrap Distribution

Nate Wells Confidence Intervals II Math 141, 3/11/21 16 / 36



Bootstrapping Confidence Intervals Confidence Interval Misunderstandings The infer package

Common Confidence Interval Misunderstandings

2 A 95% confidence interval does not mean that 95% of all sample means fall within
the given range.

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Sampling Distribution

0

50

100

150

200

7.0 7.5 8.0 8.5
x_bar

co
un

t

Bootstrap Distribution

Nate Wells Confidence Intervals II Math 141, 3/11/21 17 / 36



Bootstrapping Confidence Intervals Confidence Interval Misunderstandings The infer package

Common Confidence Interval Misunderstandings

3 A 95% confidence interval does not mean that there is a 95% chance that the true
parameter falls in the given range.

• Once a random sample has been observed and the confidence interval calculated,
there is no more randomness in the process. We cannot make probabilistic statements
about the outcome.

• At this point, the interval either does or does not contain the fixed (but unknown)
parameter

• One sample happened to have a sample mean of 4.9, producing a confidence interval of
(4.6, 5.2).

• Based on what you know about sleep patterns, do you think there is a 95% chance this
interval contains the true parameter?

• What is a plausible alternative explanation for this interval?
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Section 3

The infer package
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The infer Package

• The infer package makes efficient use of the %>% operator perform statistical
inference.

• The infer package makes use of several verbs-like functions:
• specify, generate, calculate, visualize, get_ci
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COVID Incubation Time

The Infectious Disease Dynamics Group at Johns Hopkins University collected data
between Dec 2019 and Jan 2019 on exposure and symptom onset for COVID-19 in Hubei
Province of China.

The distribution of Incubation times for 64 patients is shown below:

0

5

10

15

20

25

0 3 6 9
Incubation (days)

co
un

t

Sample's Distribution

• What is the population of interest? What is the parameter?
• What is the sample? What is the statistic?
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specify the variables

• Every statistical investigation begins with a sample data frame (i.e. covid)

• The sample may contain many variables of interest
• We must first specify which variable(s) will be the focus of our investigation by
designating a response variable

• To investigate the infection rate
covid %>%

specify(response = Incubation)
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generate replicates

• In order to create a bootstrap distribution, we need to resample many times from the
OG sample

• After selecting variables, pipe results into the generate function to create
replicates

covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap")

• We need to indicate how many replicates we want, and what type of method we’ll use
to create them.

• For bootstrap confidence intervals, choose type = "bootstrap", and almost always
use at least reps = 2000

• The resulting data frame has a number of rows equal reps × sample_size
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calculate summary statistics

• Once we have our bootstrap samples, we need to compute the corresponding statistics

• Use the calculate function, whose first argument is stat

• Many statistics are available: "mean", "sum", "sd", "median", "prop", "diff in
mean, "correlation", "slope", and more!

covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

• After applying calculate the resulting data frame consists of one bootstrap statistic
for each replicate (saved to the variable stat)
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Sample Statistic

• Suppose you want to just calculate summary statistics of the OG sample

• By using specify and calculate (and omitting generate) we can do just that,
paralleling similar calculation for the bootstrap statistics

covid_stat<- covid %>%
specify(response = Incubation) %>%
calculate(stat = "mean")

covid_stat

## # A tibble: 1 x 1
## stat
## <dbl>
## 1 3.03

• Note: we saved the value of this calculation as covid_stat so we could use it later
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Save the bootstrap too

• Since we also will want to make frequent use of the bootstrap statistics, it’s worth
saving them as a variable too:

covid_boot<- covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

head(covid_boot)

## # A tibble: 6 x 2
## replicate stat
## <int> <dbl>
## 1 1 2.65
## 2 2 3.15
## 3 3 2.67
## 4 4 3.39
## 5 5 3.27
## 6 6 3.35
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visualize Bootstrap Distribution

• In order to perform any statistical inference, we need to ensure appropriate shape
conditions on bootstrap distribution are met

• Use the visaulize verb to quickly generate a reasonably nice-looking histogram of
the bootstrap distribution.

covid_boot %>% visualize()
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get_confidence_interval to. . . Get Confidence Interval

• To compute a confidence interval, pipe the calculated data frame into
get_confidence_interval (you can use get_ci for brevity)

• We need to specify the type of interval we want (either "percentile" or "se"),
along with the confidence level

• It’s useful to save the resulting data frame for later use
percentile_ci<-covid_boot %>%

get_ci(level = .95, type = "percentile")
percentile_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63

• When using the percentile type, the first value printed is the lower and the second
is the upper bound.
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Shade Confidence Intervals

• Once you’ve used get_ci to obtain endpoints of the confidence interval, you can
shade the sampling distribution with the confidence interval region.

covid_boot %>% visualize()+shade_ci(endpoints = percentile_ci)
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Standard Error Method

• The confidence interval using the standard error method will be of the form

statistic ± 2 · SE
• Here, SE is an approximation of the standard error based on the standard deviation of
the bootstrap distribution

• It is possible to use the SE method with other confidence levels too. In this case, 2 is
replaced with another appropriate value (discussed later this term)

se_ci<-covid_boot %>%
get_ci(level = .95, type = "se", point_estimate = covid_stat)

se_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60

• Note: for the se method, we also need to specify our point estimate (which is why we
saved it as a variable before)
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## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60

• Note: for the se method, we also need to specify our point estimate (which is why we
saved it as a variable before)
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Compare the Methods

Each method produced a different confidence interval:

percentile_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63
se_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.46 3.60

• Why?
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visualize Confidence Intervals

covid_boot %>% visualize()
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visualize Confidence Intervals
covid_boot %>% visualize() +

shade_confidence_interval(endpoints = percentile_ci)+
geom_vline(xintercept = 3.03, linetype = "dashed")
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covid_boot %>% visualize() +
shade_confidence_interval(endpoints = se_ci)+
geom_vline(xintercept = 3.03, linetype = "dashed")
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visualize Confidence Intervals
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visualize Confidence Intervals
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visualize Confidence Intervals

SE Method (with Percentile in blue)
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