Hypothesis Testing I

Nate Wells

Math 141, 3/14/22

Nate Wells

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Introduce significance tests to assess strength of statistical evidence for a conclusion
- Discuss hypothesis testing framework

Section 1

Hypothesis Testing Framework

• In the long run, a fair coin should land heads about 50% of the time

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 5 heads in a row is 3.125%, while 8 heads in a rows is 0.39%

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 5 heads in a row is 3.125%, while 8 heads in a rows is 0.39%
- If I flip a coin 8 times in each of 256 classes over the next several years, I expect to get 8 heads in a row in 1 one of them.

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 5 heads in a row is 3.125%, while 8 heads in a rows is 0.39%
- If I flip a coin 8 times in each of 256 classes over the next several years, I expect to get 8 heads in a row in 1 one of them.
- But, I have spent **many** hours practicing flipping coins, and have perfected a technique to flip heads every time.

- In the long run, a fair coin should land heads about 50% of the time
 - But coin flips are also random events, so it is possible for unlikely events to occur.
- The probability a coin flips heads *n* times in a row is 0.5^{*n*}.
 - i.e. The probability of 5 heads in a row is 3.125%, while 8 heads in a rows is 0.39%
- If I flip a coin 8 times in each of 256 classes over the next several years, I expect to get 8 heads in a row in 1 one of them.
- But, I have spent **many** hours practicing flipping coins, and have perfected a technique to flip heads every time.

Let's do an experiment. I'll flip a coin 8 times and count how many heads I get in a row.

• If and when you believe me that I have a coin-flipping technique, raise your hand.

So. . .

So. . .

• What are some possible explanations?

So. . .

- What are some possible explanations?
 - I have a special coin flipping technique
 - I lied about the result
 - The coin was not fair

So. . .

- What are some possible explanations?
 - I have a special coin flipping technique
 - I lied about the result
 - The coin was not fair
 - We witnessed an unlikely event for a fair coin, and the result is due to chance

So. . .

- What are some possible explanations?
 - I have a special coin flipping technique
 - I lied about the result
 - The coin was not fair
 - We witnessed an unlikely event for a fair coin, and the result is due to chance
- The guiding principle of hypothesis testing is:

The more unlikely an event is under one hypothesis, the more credence we should give to alternative hypotheses

Hypothesis Testing represents a type of scientific experiment, and so should follow the general scientific method.

1 Present research question

- Present research question
- Ø Identify hypotheses

- Present research question
- Ø Identify hypotheses
- Obtain data

- 1 Present research question
- Ø Identify hypotheses
- Obtain data
- Ø Calculate relevant statistics

- Present research question
- Ø Identify hypotheses
- Obtain data
- Ø Calculate relevant statistics
- 6 Compute likelihood of observing statistic under original hypothesis

- Present research question
- Ø Identify hypotheses
- Obtain data
- Ø Calculate relevant statistics
- **6** Compute likelihood of observing statistic under original hypothesis
- 6 Determine statistical significance and make conclusion on research question

• Before the coin flipping experiment, we may have several (informal) hypotheses:

- Before the coin flipping experiment, we may have several (informal) hypotheses:
 - The coin is fair
 - Nate can always flip heads
 - The coin is unfair
 - Nate will lie about the results

- Before the coin flipping experiment, we may have several (informal) hypotheses:
 - The coin is fair
 - Nate can always flip heads
 - The coin is unfair
 - Nate will lie about the results
- But in order to compare these, it would be helpful to consider a set of hypotheses that:
 - 1 Are mutually exclusive
 - Ø Make specific statements about a parameter
 - 3 Do not discuss the specific outcome of the experiment

- Before the coin flipping experiment, we may have several (informal) hypotheses:
 - The coin is fair
 - Nate can always flip heads
 - The coin is unfair
 - Nate will lie about the results
- But in order to compare these, it would be helpful to consider a set of hypotheses that:
 - 1 Are mutually exclusive
 - Ø Make specific statements about a parameter
 - **3** Do not discuss the specific outcome of the experiment
- Let *p* denote the true probability that the coin flips heads.

- Before the coin flipping experiment, we may have several (informal) hypotheses:
 - The coin is fair
 - Nate can always flip heads
 - The coin is unfair
 - Nate will lie about the results
- But in order to compare these, it would be helpful to consider a set of hypotheses that:
 - 1 Are mutually exclusive
 - Ø Make specific statements about a parameter
 - O not discuss the specific outcome of the experiment
- Let *p* denote the true probability that the coin flips heads.

Hypothesis 1: p = 0.5 Hypothesis 2: p > 0.5

- Before the coin flipping experiment, we may have several (informal) hypotheses:
 - The coin is fair
 - Nate can always flip heads
 - The coin is unfair
 - Nate will lie about the results
- But in order to compare these, it would be helpful to consider a set of hypotheses that:
 - 1 Are mutually exclusive
 - Ø Make specific statements about a parameter
 - 3 Do not discuss the specific outcome of the experiment
- Let *p* denote the true probability that the coin flips heads.

Hypothesis 1: p = 0.5 Hypothesis 2: p > 0.5

• The first informal hypothesis is represented by Hypothesis 1. The other three are represented by Hypothesis 2.

• The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.

- The **null hypothesis** *H*₀ is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The null value is the value of the population parameter under the Null Hypothesis.

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The null value is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H*_a are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.

Identify Hypotheses

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The null value is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H_a* are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.
 - Incorrect H_0 : The proportion of heads in 5 flips of the coin is $\hat{p} = 0.5$.

Identify Hypotheses

- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The Null and Alternative hypotheses are **always** statements about populations, and *often* are statements about the particular values of population parameters.
- The null value is the value of the population parameter under the Null Hypothesis.
- *H*₀ and *H_a* are **never** statements about particular values of sample statistics. They are **hypotheses** and should be able to be expressed before any observation of data.
 - Incorrect H_0 : The proportion of heads in 5 flips of the coin is $\hat{p} = 0.5$.
 - Incorrect H_a : The proportion of heads in 5 flips of the coin was $\hat{p} = 1 > 0.5$.

• The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.
 - It is the default that would be assumed if no statistical investigation were conducted, and will be the position maintained if the study is inconclusive.

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.
 - It is the default that would be assumed if no statistical investigation were conducted, and will be the position maintained if the study is inconclusive.
- The alternative hypothesis often represents the research goal, or the claim for which we seek evidence.

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.
 - It is the default that would be assumed if no statistical investigation were conducted, and will be the position maintained if the study is inconclusive.
- The alternative hypothesis often represents the research goal, or the claim for which we seek evidence.
 - It is the only statement we will be able to provide evidence for after our test.

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.
 - It is the default that would be assumed if no statistical investigation were conducted, and will be the position maintained if the study is inconclusive.
- The alternative hypothesis often represents the research goal, or the claim for which we seek evidence.
 - It is the only statement we will be able to provide evidence for after our test.
- In the coin flipping experiment, all else equal, we assume that a coin is fair. But I claimed that I had a technique for producing heads.

- The Null and Alternative Hypothesis statements are *not* interchangeable. In our class...
 - The null hypothesis will (mostly) be a statement of equality for a parameter (i.e p = .5)
 - The alternative hypothesis will be a statement of inequality for a parameter (i.e. p > .5)
 - Other types of hypotheses are explored in further statistics classes (Math 392)
- Because of the logic of hypothesis testing, the null hypothesis should represent the *status quo* belief about the parameter.
 - It is the default that would be assumed if no statistical investigation were conducted, and will be the position maintained if the study is inconclusive.
- The alternative hypothesis often represents the research goal, or the claim for which we seek evidence.
 - It is the only statement we will be able to provide evidence for after our test.
- In the coin flipping experiment, all else equal, we assume that a coin is fair. But I claimed that I had a technique for producing heads.
 - The null hypothesis is that the coin is fair. The alternative is that coin flips heads more often than not.

Nate Wells

• While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include:
 - 1 $H_a: p > 0.5;$ 2 $H_a: p < 0.5$

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include: *H_a*: p > 0.5; *H_a*: p < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value. (i.e. *p* ≠ .5)

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include: *H_a*: p > 0.5; *H_a*: p < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value. (i.e. *p* ≠ .5)
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value (i.e. one of p > .5 or p < .5)

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include: *H_a*: p > 0.5; *H_a*: p < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value. (i.e. *p* ≠ .5)
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value (i.e. one of p > .5 or p < .5)
- Default to using two-sided hypothesis tests. Only use one-sided tests when you are truly interested in only a single direction of effect.

- While there is only one logical *negation* of the Null Hypothesis, there are several statements *contrary* to the Null Hypothesis.
 - If $H_0: p = 0.5$, the logical negation is $H_a: p \neq 0.5$.
 - But two contrary statements include: *H_a*: p > 0.5; *H_a*: p < 0.5
- The alternate hypothesis in a **two-sided hypothesis test** proposes that the population parameter is not equal null value. (i.e. $p \neq .5$)
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value (i.e. one of p > .5 or p < .5)
- Default to using two-sided hypothesis tests. Only use one-sided tests when you are truly interested in only a single direction of effect.
 - In the coin flipping experiment, we were interested in verifying my claim that I could flip heads consistently, so we did use a one-sided hypothesis (p > .5)

• To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - · What is the greatest number of heads you would plausibly expect to see?

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - What is the greatest number of heads you would plausibly expect to see?
 - If I had 7 out of 8 heads, would you still believe the coin was fair?

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - What is the greatest number of heads you would plausibly expect to see?
 - If I had 7 out of 8 heads, would you still believe the coin was fair?
 - How likely is is that 7 or more heads occur, if the coin were fair?

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - What is the greatest number of heads you would plausibly expect to see?
 - If I had 7 out of 8 heads, would you still believe the coin was fair?
 - How likely is is that 7 or more heads occur, if the coin were fair?
- To answer questions like these, we need to know the distribution of the statistic of interest, *if the null hypothesis were true*.

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - What is the greatest number of heads you would plausibly expect to see?
 - If I had 7 out of 8 heads, would you still believe the coin was fair?
 - How likely is is that 7 or more heads occur, if the coin were fair?
- To answer questions like these, we need to know the distribution of the statistic of interest, *if the null hypothesis were true*.
 - This distribution is called the **Null Distribution** and is the theoretical sampling distribution for the statistic if the null hypothesis were true.

- To compare Null and Alternate Hypotheses, we need to quantify how likely it is to observe a particular sample statistic, *if the null hypothesis were true*.
 - If I flip a fair coin 8 times, do you expect me to get exactly 4 heads? (Why / Why not?)
 - What is the greatest number of heads you would plausibly expect to see?
 - If I had 7 out of 8 heads, would you still believe the coin was fair?
 - How likely is is that 7 or more heads occur, if the coin were fair?
- To answer questions like these, we need to know the distribution of the statistic of interest, *if the null hypothesis were true.*
 - This distribution is called the Null Distribution and is the theoretical sampling distribution for the statistic if the null hypothesis were true.
 - We can approximate the Null Distribution using simulation, randomization and bootstrapping.

We can use R to simulate one experiment of 8 coin flips by

We can use R to simulate one experiment of 8 coin flips by

• Creating a data frame consisting of Heads and Tails

```
coin <- data.frame(face = c("Heads", "Tails"))</pre>
```

We can use R to simulate one experiment of 8 coin flips by

Creating a data frame consisting of Heads and Tails

```
coin <- data.frame(face = c("Heads", "Tails"))</pre>
```

· Sampling from this data frame with replacement 8 times

```
coin %>%rep_sample_n(coin, size = 8, replace = T)
```

replicate face ## ## 1 1 Tails ## 2 1 Tails ## 3 1 Tails ## 4 1 Heads 1 Tails ## 5 ## 6 1 Heads ## 7 1 Heads ## 8 1 Tails

We can use R to simulate one experiment of 8 coin flips by

Creating a data frame consisting of Heads and Tails

```
coin <- data.frame(face = c("Heads", "Tails"))</pre>
```

· Sampling from this data frame with replacement 8 times

```
coin %>%rep_sample_n(coin, size = 8, replace = T)
```

```
##
     replicate face
## 1
             1 Tails
             1 Tails
## 2
## 3
             1 Tails
## 4
             1 Heads
## 5
             1 Tails
## 6
             1 Heads
## 7
             1 Heads
## 8
             1 Tails
```

· Computing the number and proportion of heads obtained in this one experiment

```
coin %>% rep_sample_n(size = 8, replace = T) %>% summarize(n_heads = sum(face == "Heads")) %>%
  mutate(p_hat = n_heads/8)
```

```
## n_heads p_hat
## 1 3 0.375
```

We can use R to simulate 2000 experiments of 8 coin flips by changing reps = 1 to reps = 2000

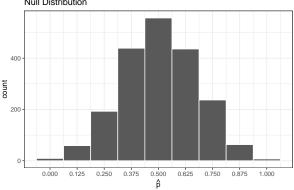
We can use R to simulate 2000 experiments of 8 coin flips by changing reps = 1 to reps = 2000 coin %>% rep_sample_n(size = 8, replace = T, reps = 2000) %>% summarize(n_heads = sum(face == "Heads")) %>% mutate(p_hat = n_heads/8)

##	# A t	ibble: 2,00	00 x 3	
##	re	plicate n_h	neads p_hat	
##		<int> <</int>	int> <dbl></dbl>	
##	1	1	5 0.625	
##	2	2	5 0.625	
##	3	3	4 0.5	
##	4	4	4 0.5	
##	5	5	3 0.375	
##	6	6	3 0.375	
##	7	7	3 0.375	
##	8	8	2 0.25	
##	9	9	3 0.375	
##	10	10	2 0.25	
##	#	with 1,990) more rows	

 Note that rep_sample_n automatically adds group_by(replicate) in preparation for summarize.

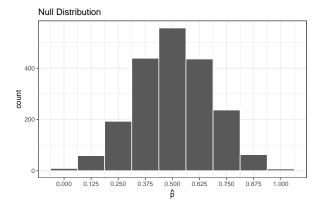
• We can use a histogram to visualize the Null Distribution of the sample proportion \hat{p}

• We can use a histogram to visualize the Null Distribution of the sample proportion \hat{p} null_stats %>% ggplot(aes(x = p_hat))+geom_histogram(bins = 9, color = "white")



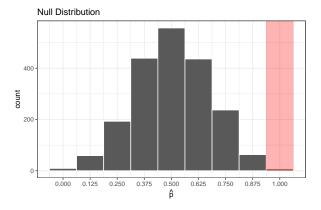
Null Distribution

• We can use a histogram to visualize the Null Distribution of the sample proportion \hat{p} null_stats %>% ggplot(aes(x = p_hat))+geom_histogram(bins = 9, color = "white")



• How often would we have observed $\hat{p} = 1.0$?

• We can use a histogram to visualize the Null Distribution of the sample proportion \hat{p} null_stats %>% ggplot(aes(x = p_hat))+geom_histogram(bins = 9, color = "white")



• How often would we have observed $\hat{p} = 1.0$?

• The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if H_0 were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

• The p-value quantifies the strength of evidence against the Null Hypothesis. Smaller p-values represent stronger evidence to reject *H*₀.

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

- The p-value quantifies the strength of evidence against the Null Hypothesis. Smaller p-values represent stronger evidence to reject *H*₀.
 - P-values very close to 0 represent statistics that were very unlikely to arise by chance, if the null hypothesis were true.

• Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

- Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.
 - Then calculate the proportion of simulated statistics as extreme as the test statistic.

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% mutate(extreme = ifelse(p_hat >=1.0, "yes", "no")) %>%
group_by(extreme) %>% summarize(n = n()) %>%
mutate(proportion = n/sum(n))
```

```
## # A tibble: 2 x 3
## extreme n proportion
## <chr> <int> <dbl>
## 1 no 1993 0.996
## 2 yes 7 0.0035
```

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% mutate(extreme = ifelse(p_hat >=1.0, "yes", "no")) %>%
group_by(extreme) %>% summarize(n = n()) %>%
mutate(proportion = n/sum(n))
```

##	#	A tibbl	e: 2 x	3
##		extreme	n	proportion
##		<chr></chr>	<int></int>	<dbl></dbl>
##	1	no	1993	0.996
##	2	yes	7	0.0035

• Method 2: We use theory-based tools to create the theoretical null distribution.

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% mutate(extreme = ifelse(p_hat >=1.0, "yes", "no")) %>%
group_by(extreme) %>% summarize(n = n()) %>%
mutate(proportion = n/sum(n))
```

##	#	А	tibbl	Le:	2	х	3
##		ex	treme	Э		n	proportion
##		<c< td=""><td>:hr></td><td><</td><td>int</td><td>;></td><td><dbl></dbl></td></c<>	:hr>	<	int	;>	<dbl></dbl>
##	1	no	,	1	199	93	0.996
##	2	ye	s			7	0.0035

- Method 2: We use theory-based tools to create the theoretical null distribution.
 - Then use the model to calculate the theoretical probability of observing a sample statistic as extreme as the test statistic.

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% mutate(extreme = ifelse(p_hat >=1.0, "yes", "no")) %>%
group_by(extreme) %>% summarize(n = n()) %>%
mutate(proportion = n/sum(n))
```

##	#	A	tibb	Le:	2	х	3
##		ex	treme	Э		n	proportion
##		<c< td=""><td>:hr></td><td><</td><td>int</td><td>;></td><td><dbl></dbl></td></c<>	:hr>	<	int	;>	<dbl></dbl>
##	1	nc	,	1	199	93	0.996
##	2	ye	s			7	0.0035

- Method 2: We use theory-based tools to create the theoretical null distribution.
 - Then use the model to calculate the theoretical probability of observing a sample statistic as extreme as the test statistic.
 - Assuming that coin flips heads with probability 0.5 and that each flip is independent of the others, then the probability of 8 consecutive heads is

0.5^8

[1] 0.00390625

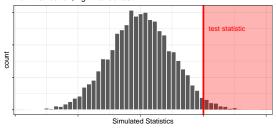
• Does the specific alternative hypothesis play any role in making the null distribution?

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?

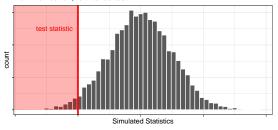
- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The **direction** of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The **direction** of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **()** If H_a is of the form parameter > null value, then the p-value is the proportion of simulated statistics greater than or equal to the test statistic (i.e. the right tail)



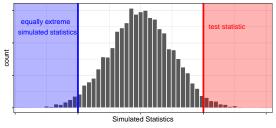
Null Distribution, right-tailed test

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The **direction** of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **2** If H_a is of the form parameter < null value, then the p-value is the proportion of simulated statistics less than or equal to the test statistic (i.e. the left tail)



Null Distribution, left-tailed test

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The **direction** of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **(2)** If H_a is of the form parameter \neq null value, then the p-value is twice the proportion of simulated statistics more extreme than the test statistic (i.e. both tails)



Null Distribution, two-tailed test

• Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

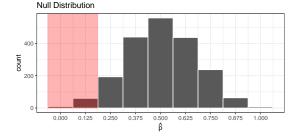
$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

• We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

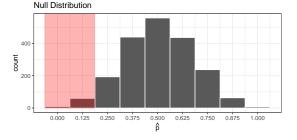
- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:



- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:

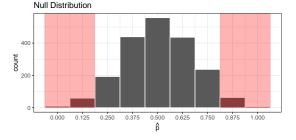


• We find the proportion of simulated statistics in the left tail is 0.034

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:



• We double this to include the right-tail as well, and get a p-value of 0.068.