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In this lecture, we will. . .

• Use P-values to quantify the strength of evidence against the null hypothesis
• Investigate significance level as means of making decisions
• Discuss decision errors and statistical power
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Hypothesis Testing Framework

Framework for Hypothesis Testing

Hypothesis Testing represents a type of scientific experiment, and so should follow the
general scientific method.

1 Present research question

2 Identify hypotheses

3 Obtain data

4 Calculate relevant statistics

5 Compute likelihood of observing statistic under original hypothesis

6 Determine statistical significance and make conclusion on research question
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Hypothesis Testing Framework

Review: Hypotheses

• The null hypothesis H0 is the claim we are testing. It often represents a skeptical
perspective or that there is no relationship among several variables.

• H0: The probability of heads is 50%, or p = 0.5.

• The alternative hypothesis Ha is contrary to the null hypothesis. It is often the
theory we would like to prove.
• Ha: The probability of heads is greater than 50%, or p > 0.5.

• The alternate hypothesis in a two-sided hypothesis test proposes that the
population parameter is not equal null value. (i.e. p 6= .5)
• The alternate hypothesis in a one-sided hypothesis test proposes that the population
parameter is less than (or greater than) the null value (i.e. one of p > .5 or p < .5)
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Hypothesis Testing Framework

Approximating the Null Distribution

• The distribution of the statistic of interest, if the null hypothesis were true, is called the Null
Distribution

• We can use R to approximate the null distribution by running 2000 experiments of 8 coin flips:
coin %>% rep_sample_n(size = 8, replace = T, reps = 2000) %>%

summarize(n_heads = sum(face == "Heads")) %>% mutate(p_hat = n_heads/8)

## # A tibble: 2,000 x 3
## replicate n_heads p_hat
## <int> <int> <dbl>
## 1 1 5 0.625
## 2 2 5 0.625
## 3 3 4 0.5
## 4 4 4 0.5
## 5 5 3 0.375
## 6 6 3 0.375
## 7 7 3 0.375
## 8 8 2 0.25
## 9 9 3 0.375
## 10 10 2 0.25
## # ... with 1,990 more rows
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Hypothesis Testing Framework

Visualizing the Null Distribution

• We can use a histogram to visualize the Null Distribution of the sample proportion p̂

null_stats %>% ggplot(aes(x = p_hat))+geom_histogram(bins = 9, color = "white")
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Hypothesis Testing Framework

P-Values

• The p-value of a sample is the probability of observing a sample statistic at least as
favorable to the alternative hypothesis as the current statistic, if H0 were true.

• To distinguish between sample statistics generally and the particular one obtained
from the sample, we call the latter the test statistic
• In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time.

The test statistic is p̂ = 1.0.
• The p-value for this test statistic is

Probability of at least 8 heads in 8 flips = 0.58 = 0.0039

• The p-value quantifies the strength of evidence against the Null Hypothesis. Smaller
p-values represent stronger evidence to reject H0.
• P-values very close to 0 represent statistics that were very unlikely to arise by chance, if

the null hypothesis were true.
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Hypothesis Testing Framework

Calculating P-Values

• Method 1: We can approximate the null distribution using simulation, bootstrapping,
and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.
null_stats %>% mutate(extreme = ifelse(p_hat >=1.0, "yes", "no")) %>%

group_by(extreme) %>% summarize(n = n()) %>%
mutate(proportion = n/sum(n))

## # A tibble: 2 x 3
## extreme n proportion
## <chr> <int> <dbl>
## 1 no 1993 0.996
## 2 yes 7 0.0035

• Method 2: We use theory-based tools to create the theoretical null distribution.
• Then use the model to calculate the theoretical probability of observing a sample

statistic as extreme as the test statistic.
• Assuming that coin flips heads with probability 0.5 and that each flip is independent of

the others, then the probability of 8 consecutive heads is
0.5ˆ8

## [1] 0.00390625
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Hypothesis Testing Framework

P-Values and the Alternative Hypothesis

• Does the specific alternative hypothesis play any role in making the null distribution?

• No. The null distribution just depends on the null hypothesis. It describes the
distribution of the statistic if the null hypothesis were true.

• Does the specific alternative hypothesis play any role in calculating the p-value?
• Yes! The direction of the alternative hypotheses determines which “tail(s)” of the null

distribution correspond to extreme values.

1 If Ha is of the form parameter > null value, then the p-value is the proportion of simulated
statistics greater than or equal to the test statistic (i.e. the right tail)

test statistic

Simulated Statistics

co
un

t

Null Distribution, right−tailed test
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Hypothesis Testing Framework

P-Values and the Alternative Hypothesis

• Does the specific alternative hypothesis play any role in making the null distribution?
• No. The null distribution just depends on the null hypothesis. It describes the

distribution of the statistic if the null hypothesis were true.

• Does the specific alternative hypothesis play any role in calculating the p-value?
• Yes! The direction of the alternative hypotheses determines which “tail(s)” of the null

distribution correspond to extreme values.

3 If Ha is of the form parameter 6= null value, then the p-value is twice the proportion of
simulated statistics more extreme than the test statistic (i.e. both tails)

test statistic
equally extreme 

 simulated statistics
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Hypothesis Testing Framework

A Two-Tailed Example

• Suppose we want to determine whether a coin is fair, but don’t have any prior expectation
that it is biased towards heads or tails.

• Our hypotheses are:
H0 : p = 0.5 Ha : p 6= 0.5

• We flip the coin 8 times and obtain 1 heads, for a proportion p̂ = 0.125.
• Using the previous null-distribution, we shade values that are as extreme as our statistic:
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0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

p̂
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Null Distribution

• We find the proportion of simulated statistics in the left tail is 0.034
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• We double this to include the right-tail as well, and get a p-value of 0.068.
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Hypothesis Testing Framework

Statistical Significance

• How do we decide what counts as sufficient evidence to reject the null hypothesis in
favor of the alternative?

• The threshold for an experiment is called the significance level (usually denote with
α).
• In many fields, the standard significance level is α = 0.05. But this may vary widely

depending on application.

• If the P-Value is less than the prescribed significance level of the test, we say the data
is statistically significant and provides good evidence to reject H0 in favor of Ha.
• In the coin flip experiment, P-value < α since 0.03125 < 0.05
• Our test was statistically significant and we reject the hypothesis that the coin is fair in

favor of the hypothesis that the coin is more likely to flip heads.

• We should always choose the value of α prior to conducting an experiment and
observing data. Usually the choice is made for us depending on conventions in our
field of study.
• Choosing a significance level of α = 0.05 means that we treat any result that would
have occurred by chance alone less than 5% of the time as good evidence that the
null hypothesis is false.
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Hypothesis Testing Framework

Types of Errors

• Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that
our conclusion will never be in err.

• Remember: Unlikely things happen. All of the time.

• There are four possible outcomes to a hypothesis test, summarized below:

Test conclusion
do not reject H0 reject H0 in favor of HA

H0 true Correct Decision Type 1 Error
Truth HA true Type 2 Error Correct Decision

• A Type 1 Error occurs when we reject H0 when it is actually true.
• The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.

• A Type 2 Error occurs when we fail to reject H0 when it is in fact false.
• The coin was indeed biased. But we withheld judgment since unlikely events do happen

from time to time.
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Hypothesis Testing Framework

Significance Level and Power

• The significance level of a hypothesis test corresponds to our willingness to make
Type I errors.

• Decreasing the significance level decreases the number of Type I errors made across a
large number of experiments.
• Is there a cost to decreasing significance level to ensure we do not make Type I errors?

• Yes! Because decreasing the significance level also makes it less likely we will reject H0,
and so usually increases the chance of making a Type 2 error.

• The power of a statistical test is the probability of correctly rejecting the null
hypothesis when it is false. That is

Power = 1− Probability of Type II Error
• In general, computing power can be difficult, and requires we investigate the distribution

of a sample statistic under the alternative hypothesis.
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Hypothesis Testing Framework

Rapid COVID test

A quick and accessible (but unreliable) test for COVID-19 is to match a patient’s
symptoms to the 10 most common symptoms exhibited by victims of COVID.

Suppose a person walks into a medical clinic with 6 of the 10 symptoms of COVID, and
medical personnel are concerned the person may have COVID.

1 What are the Null and Alternate Hypotheses in this case?

2 What ‘statistic‘ is being used to determine whether the person has COVID

3 In the context of this problem, what does a Type I error represent? What are some
possible consequences of a Type I error?

4 Similarly, what does a Type II error represent? What are some possible consequences
of a Type II error?

5 What significance level are you willing to use for this COVID test? Remember,
decreasing significance level also decreases the power of the test.
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Hypothesis Testing Framework

DNA Tests

DNA testing allows researchers to compare markers in a person’s DNA to those found at
crime scene. Suppose the DNA found at a crime scene will always match the perpetrator
of the crime. However, there is a small chance that the crime scene DNA will also match
the markers for another innocent person.

Suppose a person is on trial for a crime. Forensic scientists attest that the person’s DNA
matches that found at the crime scene.

1 What are the Null and Alternate Hypotheses in this case?

2 What ‘statistic‘ is being used to determine whether the person has committed the
crime.

3 In the context of this problem, what does a Type I error represent? What are some
possible consequences of a Type I error?

4 Similarly, what does a Type II error represent? What are some possible consequences
of a Type II error?

5 What significance level are you willing to use for this DNA test? Remember,
decreasing significance level also decreases the power of the test.
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