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Nate Wells



Outline

In this lecture, we will. . .
® |ntroduce key definitions for probability theory
® Define conditional probability

® Discuss the Law of Total Probability and Tree Diagrams
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Probability Theory is the study and quantification of uncertainty and randomness in
outcomes of repeated experiments.
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Random Processes and Events

Probability Theory is the study and quantification of uncertainty and randomness in
outcomes of repeated experiments.

® A random process is one which we know what results could happen, but don’t know
which particular result will happen.

® |t can also be used to model processes that are complicated, but not truly random, to
figure out how they work

® An event is a statement that can be ascertained based on the result of a particular
random process.

® Example: Suppose we roll a 6-sided die. One event is “the die rolls a 6”. Another is
“the die rolls an odd number”.

® The statement “it will rain at 9am in Portland on 3/28" is not an event for this particular
process; we cannot determine whether it occurs based on the results of the die roll

® Sometimes, statisticians distinguish between the words outcome and event, where
outcome is used to refer to the minimal observable result of a process, while event refers
to a collection of outcomes.

® \We won't be overly concerned about this distinction, and refer to all results as events
(This distinction is further explored in Math 113 and Math 391)

Nate Wells Probability



Probability Theory
[e]e] lele]elele)

Probability

® (The Law of Large Numbers) The probability of a particular event is the proportion
of times the event would occur, if we observed the random process an arbitrarily large
number of times.
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Probability

® (The Law of Large Numbers) The probability of a particular event is the proportion
of times the event would occur, if we observed the random process an arbitrarily large
number of times.

® To say that a coin has 50% probability of landing heads, means that. ..

® In a large number of coin flips, we expect the proportion of heads to be close to 0.5, and
that this proportion should get closer to 0.5 with additional flips.

® Since probabilities are defined in terms of proportions, they will always be values
between 0 and 1.

® For brevity, we'll represent statements like the probability of the event “the coin lands
heads” is 50% using the notation:

P(the coin lands heads) = 0.5 or P(Heads)=0.5 or P(H)=05
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® The probability of an event refers to the long-run tendency of the proportion.

® |t is possible for the observed proportion to deviate from the expected probability in a
finite number of trials.

® But the magnitude of these deviations decreases as the number of trials increases.
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® Note that the proportion of heads deviates (significantly) from 0.5 during the first 50
flips, but stabilizes around 0.5 by 1000 flips.
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Probability Models

® |n order to know the probability of an event, we would need to witness the random
process an infinite number of times.

® Therefore, we will never know the precise probability of a real-world event.

® Instead, we construct models which we hope are good representations of random
phenomenon.

Nate Wells



Probability Theory
[e]e]e]e] Jelele)

Probability Models

® |n order to know the probability of an event, we would need to witness the random
process an infinite number of times.

® Therefore, we will never know the precise probability of a real-world event.

® Instead, we construct models which we hope are good representations of random
phenomenon.

® A probability model has two components:
@ A list of the possible results of a random process (called events)

® A rule (called the probability function) that assigns to each event a probability between
0 and 1, in a consistent manner.

Nate Wells Probability



Probability Theory
[e]e]e]e] Jelele)

Probability Models

® |n order to know the probability of an event, we would need to witness the random
process an infinite number of times.

® Therefore, we will never know the precise probability of a real-world event.

® Instead, we construct models which we hope are good representations of random
phenomenon.

® A probability model has two components:
@ A list of the possible results of a random process (called events)

® A rule (called the probability function) that assigns to each event a probability between
0 and 1, in a consistent manner.

® Whenever we discuss probability, we are always (either explicitly or implicitly) defining
a probability model.

Nate Wells Probability



Probability Theory
[e]e]e]e] Jelele)

Probability Models

In order to know the probability of an event, we would need to witness the random
process an infinite number of times.

® Therefore, we will never know the precise probability of a real-world event.

® Instead, we construct models which we hope are good representations of random
phenomenon.

A probability model has two components:
@ A list of the possible results of a random process (called events)

® A rule (called the probability function) that assigns to each event a probability between
0 and 1, in a consistent manner.

® Whenever we discuss probability, we are always (either explicitly or implicitly) defining
a probability model.

® A large component of statistical inference is comparing observed data to the results
we would expect under a certain probability model.
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The Addition Rule

® Two events A and B are said to be mutually exclusive (or disjoint) if it is not
possible for both to occur at the same time.

® |et A denote the event “a 1 is rolled on 6-sided die” and B denote the event “a 2 is
rolled on 6-sided die”. Then A and B are disjoint events describing a single die roll.

Theorem (Addition Rule)

The probability that at least one event occurs in a pair of disjoint events is the sum of
their individual probabilities:

P(A or B) = P(A) + P(B)
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® Two events A and B are said to be mutually exclusive (or disjoint) if it is not
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Theorem (Addition Rule)
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® When a fair 6-sided die is rolled, each number 1 - 6 has equal chance of appearing.
What is the probability that a number whose name starts with f is rolled?
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The Addition Rule

® Two events A and B are said to be mutually exclusive (or disjoint) if it is not
possible for both to occur at the same time.

® |et A denote the event “a 1 is rolled on 6-sided die” and B denote the event “a 2 is
rolled on 6-sided die”. Then A and B are disjoint events describing a single die roll.

Theorem (Addition Rule)

The probability that at least one event occurs in a pair of disjoint events is the sum of
their individual probabilities:

P(A or B) = P(A) + P(B)

® When a fair 6-sided die is rolled, each number 1 - 6 has equal chance of appearing.
What is the probability that a number whose name starts with f is rolled?

P( starts with f ) = P(rolla4orrolla’5)=P(rolla4)+P(rolla5)=
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The Certain and Negligible Events

® A certain event is one that has probability 1 of occurring. A negligible event is one
that has probability 0 of occurring.

® Because the probability of an event is the long-run proportion of times it occurs, it is
possible to observe negligible outcomes, and to fail to observe certain ones
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® A certain event is one that has probability 1 of occurring. A negligible event is one
that has probability 0 of occurring.
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The Certain and Negligible Events

® A certain event is one that has probability 1 of occurring. A negligible event is one
that has probability 0 of occurring.

® Because the probability of an event is the long-run proportion of times it occurs, it is
possible to observe negligible outcomes, and to fail to observe certain ones

® Suppose | have two coins on a table. | drop both down and measure the exact
distance between their centers, and find it to be v/2 = 1.41....

® What is the probability that the distance between the centers on my next attempt will
also be /27

® What is a certain event for this experiment?
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Complementary Events

® The complement to an event A (denoted A°) is the event that occurs exactly when
the original does not.

® |f Ais the event that a 1 is rolled on a 6-sided die, then A€ is the event that a 2,3,4,5,
or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an event occurs is 1 minus the probability of the
event:
P(A%) =1 - P(A)
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Complementary Events

® The complement to an event A (denoted A°) is the event that occurs exactly when
the original does not.

® |f Ais the event that a 1 is rolled on a 6-sided die, then A€ is the event that a 2,3,4,5,
or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an event occurs is 1 minus the probability of the
event:
P(A%) =1 - P(A)

® What is the probability that any number other than a 1 is rolled on a fair 6-sided die?
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Complementary Events

® The complement to an event A (denoted A°) is the event that occurs exactly when
the original does not.

® |f Ais the event that a 1 is rolled on a 6-sided die, then A€ is the event that a 2,3,4,5,
or 6 is rolled.

Theorem (Complement Rule)

The probability that the complement of an event occurs is 1 minus the probability of the
event:
P(A%) =1 - P(A)

® What is the probability that any number other than a 1 is rolled on a fair 6-sided die?

P( roll something other thana 1)=1—P(rollal)=1-—
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Conditional Probability
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Coffee or Tea?

A survey was given to 100 Math 141 students in 2017. Some results are summarized below:
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Coffee  Tea | total
First-year 7 10 17
Sophomore 25 20 45
Junior 13 12 25
Senior 8 5 13
total 53 47 100
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Coffee or Tea?

A survey was given to 100 Math 141 students in 2017. Some results are summarized below
® What is the probability that a
random student prefers coffee?

Coffee  Tea | total
First-year 7 10 17
Sophomore 25 20 45
Junior 13 12 25
Senior 8 5 13
total 53 47 100
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A survey was given to 100 Math 141 students in 2017. Some results are summarized below

® What is the probability that a
random student prefers coffee?

® What is the probability that a
random student was a sophomore?

Coffee  Tea | total
First-year 7 10 17
Sophomore 25 20 45
Junior 13 12 25
Senior 8 5 13
total 53 47 100

Math 141, 3/28/22
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A survey was given to 100 Math 141 students in 2017. Some results are summarized below:

Coffee  Tea | total
First-year 7 10 17
Sophomore 25 20 45
Junior 13 12 25
Senior 8 5 13
total 53 47 100

® What is the probability that a
random student prefers coffee?

® What is the probability that a
random student was a sophomore?

® What is the probability that a
random student was a sophomore

who preferred coffee?
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A survey was given to 100 Math 141 students in 2017. Some results are summarized below:

Coffee  Tea | total
First-year 7 10 17
Sophomore 25 20 45
Junior 13 12 25
Senior 8 5 13
total 53 47 100

® What is the probability that a
random student prefers coffee?

® What is the probability that a
random student was a sophomore?

® What is the probability that a
random student was a sophomore

who preferred coffee?

® What is the probability that a
random sophomore preferred coffee?
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Conditional Probability

® The conditional probability of an event A given another event B is

P(A and B)

P(AIB) =~ 5
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Conditional Probability

® The conditional probability of an event A given another event B is

P(A and B)

P(AIB) =~ 5

® In the previous example, what is the conditional probability that a student prefers coffee,
given that the student is a sophomore?
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Conditional Probability

® The conditional probability of an event A given another event B is

P(A and B)

P(AIB) =~ 5

® In the previous example, what is the conditional probability that a student prefers coffee,
given that the student is a sophomore?

® How can we use conditional probability to find the probability that two events both
occur?

Theorem (General Multiplication Rule)

For any events A and B,

P(A and B) = P(A|B)P(B) <: P(BIA)P(A))
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Conditional Probability

® The conditional probability of an event A given another event B is

P(A and B)

P(AIB) =~ 5

® In the previous example, what is the conditional probability that a student prefers coffee,
given that the student is a sophomore?

® How can we use conditional probability to find the probability that two events both
occur?

Theorem (General Multiplication Rule)

For any events A and B,

P(A and B) = P(A|B)P(B) <: P(BIA)P(A))

® Find the probability that a randomly chosen student is a sophomore who likes coffee.
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Conditioning and Independence

® We say that two events are independent if knowing that one occurs doesn't change
the probability that the other occurs
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Conditioning and Independence

® We say that two events are independent if knowing that one occurs doesn't change
the probability that the other occurs

Theorem (Criteria for Independence)

Two events A and B are independent exactly when

P(A|B) = P(A) and P(B|A) = P(B)

Nate Wells Probability Math 141, 3/28/22 14 /20



Conditional Probability
0O00@000000

Conditioning and Independence

® We say that two events are independent if knowing that one occurs doesn't change
the probability that the other occurs

Theorem (Criteria for Independence)

Two events A and B are independent exactly when

P(A|B) = P(A) and P(B|A) = P(B)

® |n the previous example, are the events that “a student is a sophomore” and “a
student prefers coffee” independent?
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Multiplication Rule for Independent Events

® The general multiplication rule simplifies considerably in the case when two events are
independent:

Theorem (Independent Multiplication Rule)

If events A and B are independent, the

P(A and B) = P(A)P(B)
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Multiplication Rule for Independent Events

® The general multiplication rule simplifies considerably in the case when two events are
independent:

Theorem (Independent Multiplication Rule)

If events A and B are independent, the

P(A and B) = P(A)P(B)

® Suppose we flip a coin and roll a 6-sided die at the same time. Let A be the event
that the coin flips heads and B be the event that the die rolls a 1.

® Since the coin presumably gives us no information about the die, we say A and B are
independent.

Nate Wells Probability



Conditional Probability

0O000@00000

Multiplication Rule for Independent Events

® The general multiplication rule simplifies considerably in the case when two events are
independent:

Theorem (Independent Multiplication Rule)

If events A and B are independent, the

P(A and B) = P(A)P(B)

® Suppose we flip a coin and roll a 6-sided die at the same time. Let A be the event
that the coin flips heads and B be the event that the die rolls a 1.

® Since the coin presumably gives us no information about the die, we say A and B are
independent.

® What is the probability that A and B both occur?
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The Law of Total Probability

One useful trick for computing probabilities is the following:

Theorem (The Law of Total Probability)

Let A and B be events. Then

P(A) = P(A|B)P(B) + P(A|B°)P(B")

® \We can often represent the Law of Total Probability using a Tree Diagram:
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Tree Diagrams

Did B occur? Did A occur?

P(A[B)

A

P(A) = P(B)P(A|B) + P(not B)P(A|not B)

P(not Alnot B)

notA
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Lost Marbles

Two boxes contain a different number of red and blue marbles. The first box contains 20%
red marbles while the second contains 80% red marbles. Suppose we select a marble from
box 1 25% of the time and a marble from box 2 75% of the time. What is the
probability that a red marble is selected?
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

® The event B occurs if we get one of HH,HT, TH. So P(B) = %
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

® The event B occurs if we get one of HH,HT, TH. So P(B) = %

® The event A occurs if we get one of HT or HH, so P(A) = %
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

® The event B occurs if we get one of HH,HT, TH. So P(B) = %
® The event A occurs if we get one of HT or HH, so P(A) = %

® The events A and B both occur if we get one of HT or HH, so P(A and B) = %
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

® The event B occurs if we get one of HH,HT, TH. So P(B) = %
® The event A occurs if we get one of HT or HH, so P(A) = %

® The events A and B both occur if we get one of HT or HH, so P(A and B) = %
® Then

p(a|g) =LA and B) (AP‘?;C)‘ B) _

ENIXINIE
w
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Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

® Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

® The event B occurs if we get one of HH,HT, TH. So P(B) = %
® The event A occurs if we get one of HT or HH, so P(A) = %

® The events A and B both occur if we get one of HT or HH, so P(A and B) = %
® Then

P(A|B) =iP(A,,?;°)‘ B_z- :
piia) =TV B 2

Nate Wells
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Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events. Then

P(AIE) = P(BIA) )

~— |~

Nate Wells Probability Math 141, 3/28/22 20/20



Conditional Probability
000000000 e

Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events. Then

P(AIE) = P(BIA) )

~— |~

® Why is this rule true?
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Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events. Then

P(AIE) = P(BIA) )

~— |~

® Why is this rule true?
® Under what circumstances will P(A|B) = P(B|A)?
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Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events. Then

P(AIE) = P(BIA) )

~— |~

® Why is this rule true?
® Under what circumstances will P(A|B) = P(B|A)?

® Under what circumstances will P(A|B) be much larger than P(B|A)? Much smaller?
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Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)

Let A and B be events. Then

—

P(A|B) = P(B|A) ==

P(A
P(B

~

Why is this rule true?

Under what circumstances will P(A|B) = P(B|A)?

Under what circumstances will P(A|B) be much larger than P(B|A)? Much smaller?
Suppose P(B|A) = 1.

® What does this suggest about A and B?
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Bayes' Rule

To relate P(A|B) and P(BJ|A), we use the following theorem:

Theorem (Bayes’ Rule)

Let A and B be events. Then

—

P(A|B) = P(B|A) ==

P(A
P(B

~

Why is this rule true?

Under what circumstances will P(A|B) = P(B|A)?

Under what circumstances will P(A|B) be much larger than P(B|A)? Much smaller?
Suppose P(B|A) = 1.

® What does this suggest about A and B?

® What is P(A|B) in this case?

Nate Wells Probability Math 141, 3/28/22 20/20



	Probability Theory
	Conditional Probability

