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Outline

In this lecture, we will. . .

• Review how the sampling distribution can be used to assess sampling variability
• Discuss bootstrapping as means of approximating the sampling distribution
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Sampling Distribution Bootstrapping

Section 1

Sampling Distribution
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Sampling Distribution Bootstrapping

Polling Example

• A Oct 29 - Nov 1 2020 poll by Marist College surveyed 1020 registered voters in
Pennsylvania by landline or mobile number, asking
If November’s election were held today, whom would you support?

The options were: Joe Biden/Kamala Harris, Donald Trump/Mike Pence, Other, Unde-
cided.

• 50% of respondents supported Biden/Harris, 46% supported Trump/Pence, 1%
supported another candidate, and 3% were undecided

• In the Nov. 3 2020 election, Biden/Harris had 50.01% of the vote, while
Trump/Pence had 48.84% of the vote.

• Population: All registered voters in Pennsylvania (N ≈ 9 million)

• Population Parameter: The proportion p of registered voters who plan to vote for
Trump/Pence. Based on election results, p = 0.4884.

• Sampling Method: SRS(?) of size n = 1020 obtained using phone-numbers

• Point Estimate/Sample Statistic: The sample proportion p̂ of Americans who plan to vote
for Trump/Pence. In this case, p̂ = 0.46.
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Sampling Distribution Bootstrapping

Sampling Variability

• How confidant should we be in the accuracy of our estimate of p̂ = 0.46?

• There are about 9 million registered voters in Pennsylvania. Marist College surveyed
only 1020 of them (0.01% of the population)

• If we want to claim our estimate is exactly equal to true proportion, we should be
skeptical.

• But if we just want an estimate that is likely close true proportion, then we should be
very confidant.

• The sampling distribution tells us how much variability to expect from sample to
sample.

• Using probability theory, we can show that the standard error for the sampling
distribution of the proportion with sample size n is at most 1√

4n

• For a sample of size n = 1020, the standard error is at most SE = 0.016.
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Sampling Distribution Bootstrapping

Sampling Variability

• Suppose the true proportion of support for Trump/Pence were actually p = 0.49

• We can simulate 5000 samples of size 1020 to see how many have p̂ far from p = .49.
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Sampling Distribution, n = 1020

• Of these, only 6% differed from the true value p = .49 by more than .03
• But this also means that for 94% of samples, the true proportion p is within 0.03 of
the sample proportion p̂.
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Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?

• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

The Problem

• The sampling distribution tells us how much variability to expect from sample to
sample.

• For sampling distributions that are approximately bell-shaped (usually true if n ≥ 30),
95% of all sample means will be within 2 standard error units of the true parameter.

• We can use the standard error (i.e. standard deviation of sampling distribution) to
assess how close the typical sample statistic will be to the population parameter

What is the problem in practice?
• In order to form the sampling distribution, we need to collect a large number of
samples.

• But if we can collect enough samples to form the sampling distribution, we probably can
just take a census of the population.

• The fix?

Nate Wells Bootstrapping Math 141, 3/7/22 7 / 19



Sampling Distribution Bootstrapping

Section 2

Bootstrapping

Nate Wells Bootstrapping Math 141, 3/7/22 8 / 19



Sampling Distribution Bootstrapping

Bootstrapping

• The term bootstrapping refers to the phrase “to pull oneself up by one’s bootstraps”

• The phrase originated in the 19th century as reference to a ludicrous or impossible feat
• By the mid 20th century, its meaning had changed to suggest a success by one’s own

efforts, without outside help

• Its use in statistics alludes to both interpretations.
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Sampling Distribution Bootstrapping

The Bootstrap Trick

The Impossible Task:

• How can we learn about the sampling distribution, if we only have 1 sample?

The “Ludicrous” Solution obtained without outside help:
• Draw repeated samples from the original sample at hand; compute the statistic of
interest for each; plot the resulting distribution

The Main Idea:
• The original sample approximates the population
• Resampling from the sample approximates sampling many times from the population
• The distribution of statistics from the resamples approximates the sampling
distribution
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Sampling Distribution Bootstrapping

Theory

• We could copy the original sample many times to create a bootstrap population, and
then sample without replacement to get bootstrap samples

• But this is the same as sampling with replacement from the original sample
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Sampling Distribution Bootstrapping

The Bootstrap Procedure

To generate a bootstrap distribution:

1 Obtain an SRS of size n from the population.

2 Generate a bootstrap sample of size n by resampling with replacement from the
original sample

3 Repeat (2) a large number of times (with technology, at least 1000 times)

4 For each bootstrap sample, calculate the appropriate statistic (called the bootstrap
statistic)

5 The collection of the bootstrap statistics form the bootstrap distribution
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Sampling Distribution Bootstrapping

Proof of Concept

• Consider a very large deck of cards (5200 cards) with 100 of each standard card.

• Suppose we draw a sample hand of size 25 and calculate the mean value of the hand.
• Since we have the deck of cards, we can look at:

1 The population distribution

2 The single sample’s distribution

3 The sampling distribution for sample means

4 The bootstrap distribution for sample means
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Sampling Distribution Bootstrapping

House of Cards
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Sampling Distribution Bootstrapping

House of Cards

We can compute some relevant statistics:
Population:

mean_value sd_value
6.538462 3.153211

Sampling Distribution:

mean_xbar sd_xbar
6.55047 0.6162582

Sample:

mean_value sd_value
6.24 3.072458

Bootstrap Distribution:

mean_xbar sd_xbar
6.24119 0.604233
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Sampling Distribution Bootstrapping

Reproduction Rate for Covid-19

Researchers are interested in the reproduction rate of COVID-19.
• We have a sample of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects.

## infected n
## 1 0 5
## 2 1 13
## 3 2 14
## 4 3 12
## 5 4 5
## 6 6 1

## mean_infected
## 1 2.06

• Is the true reproduction rate exactly 2.06?
• Surely not! This is just one sample of size 50

• But how much does the reproduction rate vary from sample to sample?
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Sampling Distribution Bootstrapping

Bootstrap Reproduction Rate

Create the bootstrap samples:
bootstrap_samples <- covid %>%

rep_sample_n(size = 50, replace = TRUE, reps = 2000)

head(bootstrap_samples)

## # A tibble: 100,000 x 2
## # Groups: replicate [2,000]
## replicate infected
## <int> <int>
## 1 1 2
## 2 1 1
## 3 1 1
## 4 1 0
## 5 1 1
## 6 1 0
## 7 1 2
## 8 1 3
## 9 1 3
## 10 1 3
## # ... with 99,990 more rows

Nate Wells Bootstrapping Math 141, 3/7/22 17 / 19



Sampling Distribution Bootstrapping

Bootstrap Reproduction Rate

Compute bootstrap statistics:
bootstrap_stats <- bootstrap_samples %>%

group_by(replicate) %>%
summarize(x_bar = mean(infected))

bootstrap_stats

## # A tibble: 2,000 x 2
## replicate x_bar
## <int> <dbl>
## 1 1 1.86
## 2 2 2.36
## 3 3 2.22
## 4 4 1.86
## 5 5 1.88
## 6 6 1.6
## 7 7 2.02
## 8 8 2.16
## 9 9 2.2
## 10 10 1.8
## # ... with 1,990 more rows
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Sampling Distribution Bootstrapping

Bootstrap Reproduction Rate
Graph the bootstrap distribution:
ggplot(bootstrap_stats, aes(x = x_bar))+

geom_histogram(bins = 30, color = "white")+
labs(title = "Bootstrap Distribution, n = 50", x = expression(bar(x)))
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Bootstrap Distribution, n = 50

Use the bootstrap distribution to estimate the standard error:
bootstrap_stats %>% summarize(SE = sd(x_bar))

## # A tibble: 1 x 1
## SE
## <dbl>
## 1 0.177
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