Inference for Means

Nate Wells

Math 141, 4/13/22

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Investigate the *t* distribution.
- Create confidence intervals and perform hypothesis tests using *t* distribution for sample means.

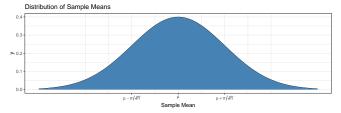
Section 1

The *t*-distribution

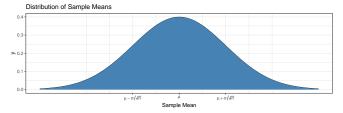
 For quantitative data, the parameter of interest is often the population mean μ, which may be estimated using a sample mean x̄.

- For quantitative data, the parameter of interest is often the population mean μ, which may be estimated using a sample mean x̄.
- By the Central Limit Theorem, the distribution of \bar{x} is approximately Normal, with mean μ and standard error $\frac{\sigma}{\sqrt{n}}$
 - where *n* is the sample size and σ is the population standard deviation

- For quantitative data, the parameter of interest is often the population mean μ, which may be estimated using a sample mean x̄.
- By the Central Limit Theorem, the distribution of \bar{x} is approximately Normal, with mean μ and standard error $\frac{\sigma}{\sqrt{n}}$
 - where *n* is the sample size and σ is the population standard deviation

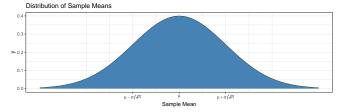


- For quantitative data, the parameter of interest is often the population mean μ, which may be estimated using a sample mean x̄.
- By the Central Limit Theorem, the distribution of \bar{x} is approximately Normal, with mean μ and standard error $\frac{\sigma}{\sqrt{n}}$
 - where *n* is the sample size and σ is the population standard deviation



• Note that smaller σ and larger *n* both correspond to smaller standard error.

- For quantitative data, the parameter of interest is often the population mean μ, which may be estimated using a sample mean x̄.
- By the Central Limit Theorem, the distribution of \bar{x} is approximately Normal, with mean μ and standard error $\frac{\sigma}{\sqrt{n}}$
 - where *n* is the sample size and σ is the population standard deviation



- Note that smaller σ and larger *n* both correspond to smaller standard error.
- As *n* increases, Normal approximation becomes more accurate, even if population is skewed.

Suppose we have a single sample that we want to use to estimate μ. The standard error for x̄ is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

Suppose we have a single sample that we want to use to estimate μ. The standard error for x̄ is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

• But if we are estimating the population mean μ , we usually don't know the value of σ .

• Suppose we have a single sample that we want to use to estimate μ . The standard error for \bar{x} is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

• But if we are estimating the population mean μ , we usually don't know the value of σ .

• Instead, we can use the sample's standard deviation *s* to estimate *σ*:

$$SE(\bar{x}) \approx \frac{s}{\sqrt{n}}.$$

• Suppose we have a single sample that we want to use to estimate $\mu.$ The standard error for \bar{x} is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

- But if we are estimating the population mean μ , we usually don't know the value of σ .
- Instead, we can use the sample's standard deviation *s* to estimate *σ*:

$$SE(\bar{x}) \approx \frac{s}{\sqrt{n}}.$$

• But this adds a new complication! The standardized statistic

$$\mathsf{z} = \frac{\bar{\mathsf{x}} - \mu}{\frac{\mathsf{s}}{\sqrt{\mathsf{n}}}}$$

no longer follows a standard Normal distribution!

• Suppose we have a single sample that we want to use to estimate μ . The standard error for \bar{x} is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

- But if we are estimating the population mean μ , we usually don't know the value of σ .
- Instead, we can use the sample's standard deviation s to estimate σ :

$$SE(\bar{x}) \approx \frac{s}{\sqrt{n}}.$$

• But this adds a new complication! The standardized statistic

$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

no longer follows a standard Normal distribution!

• This is because both \bar{x} and s are now random variables, and so each adds variability to z.

• Suppose we have a single sample that we want to use to estimate $\mu.$ The standard error for \bar{x} is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

- But if we are estimating the population mean μ , we usually don't know the value of σ .
- Instead, we can use the sample's standard deviation s to estimate σ :

$$SE(\bar{x}) \approx \frac{s}{\sqrt{n}}.$$

• But this adds a new complication! The standardized statistic

$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

no longer follows a standard Normal distribution!

- This is because both \bar{x} and s are now random variables, and so each adds variability to z.
- Instead, the standardized statistic z follows a t-distribution

• Suppose we have a single sample that we want to use to estimate $\mu.$ The standard error for \bar{x} is

$$SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}.$$

- But if we are estimating the population mean μ , we usually don't know the value of σ .
- Instead, we can use the sample's standard deviation s to estimate σ :

$$SE(\bar{x}) \approx \frac{s}{\sqrt{n}}.$$

• But this adds a new complication! The standardized statistic

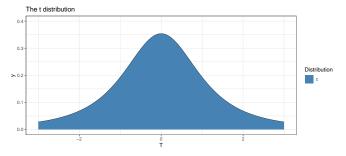
$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

no longer follows a standard Normal distribution!

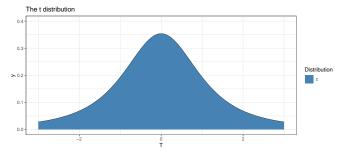
- This is because both \bar{x} and s are now random variables, and so each adds variability to z.
- Instead, the standardized statistic z follows a t-distribution
 - The *t*-distribution was first studied in 1908 by William Gosset, who published under the pseudonym *Student*.

• Like the standard Normal distribution, a *t*-distribution is symmetric, single-peaked, bell-shaped and centered at 0.

• Like the standard Normal distribution, a *t*-distribution is symmetric, single-peaked, bell-shaped and centered at 0.

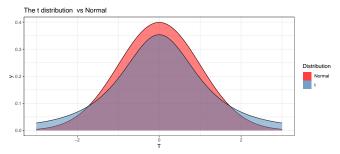


• Like the standard Normal distribution, a *t*-distribution is symmetric, single-peaked, bell-shaped and centered at 0.



• But a *t*-distribution has *heavier tails* than the Normal distribution.

• Like the standard Normal distribution, a *t*-distribution is symmetric, single-peaked, bell-shaped and centered at 0.

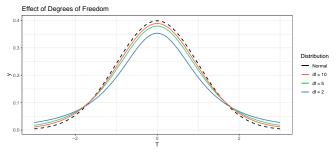


• But the *t*-distribution has *heavier tails* than the Normal distribution

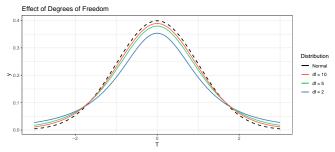
• The *t*-distribution is actually a parameterized *family* of distributions.

- The *t*-distribution is actually a parameterized *family* of distributions.
- The parameter for the *t*-distribution is called the degrees of freedom *df* and determines the **heaviness of tails**

- The *t*-distribution is actually a parameterized *family* of distributions.
- The parameter for the *t*-distribution is called the degrees of freedom *df* and determines the **heaviness of tails**

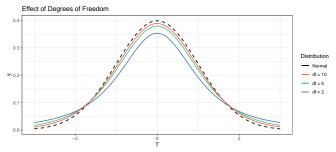


- The *t*-distribution is actually a parameterized *family* of distributions.
- The parameter for the *t*-distribution is called the degrees of freedom *df* and determines the **heaviness of tails**



• As degrees of freedom increases, the *t* distribution gets closer to the Normal distribution.

- The *t*-distribution is actually a parameterized *family* of distributions.
- The parameter for the *t*-distribution is called the degrees of freedom *df* and determines the **heaviness of tails**



- As degrees of freedom increases, the *t* distribution gets closer to the Normal distribution.
 - For $df \ge 30$, the t distribution is nearly indistinguishable from the Normal

Distribution of Sample Means using t-distribution

Theorem

Suppose a sample of size n is collected from a population with mean μ . The distribution of the sample mean \bar{x} has the following characteristics:

- **Center**: The mean is equal to μ
- **Spread**: The standard error is equal to $\frac{s}{\sqrt{n}}$ (where s is the sample st. dev.)
- Shape: The standardized statistic follows approximately a t-distribution with n − 1 degrees of freedom.

For small sample sizes ($n \le 30$), the t-distribution is only a good approximation if the population distribution is approximately Normal.

Section 2

Statistical Inference

The Origin Story

A batch of stout beer is best when it has an *original gravity* (OG) close to 1.071. The particular OG of a batch depends on a number factors (like temperature, rest time, recipe, etc.).

If we can only obtain a small number of measurements from the batch, how can we quantify whether the deviations we observe are due to random sampling, and not an actual deviation in OG?

Confidence Intervals

The t-procedures for Confidence Intervals

A C% confidence interval for a population mean μ using a sample of size *n* is

$$\bar{\mathbf{x}} \pm t^* \frac{s}{\sqrt{n}}$$

where \bar{x} and s are the mean and standard deviation of the sample, and where t^* is the critical value for C% confidence in the *t*-distribution with n-1 degrees of freedom.

The *t*-procedures are appropriate if $n \le 30$ and the population is approximately Normal, or if n > 30.

Suppose we obtain the following 5 OG measurements from a batch of beer:

Suppose we obtain the following 5 OG measurements from a batch of beer: ## [1] $1.067 \ 1.060 \ 1.077 \ 1.072 \ 1.067$

Suppose we obtain the following 5 OG measurements from a batch of beer: ## [1] 1.067 1.060 1.077 1.072 1.067 Goal: Create a 95% confidence interval for the true OG of the batch.

Suppose we obtain the following 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Create a 95% confidence interval for the true OG of the batch.

• Since our sample size is small ($n \le 30$), we need to make sure our population is approximately Normal.

Suppose we obtain the following 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Create a 95% confidence interval for the true OG of the batch.

- Since our sample size is small $(n \le 30)$, we need to make sure our population is approximately Normal.
 - Fortunately, the only variability here is due to measurement errors, which are known to be approximately Normally distributed.

Suppose we obtain the following 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Create a 95% confidence interval for the true OG of the batch.

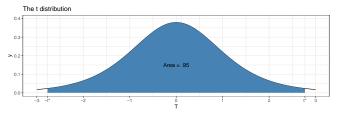
- Since our sample size is small $(n \le 30)$, we need to make sure our population is approximately Normal.
 - Fortunately, the only variability here is due to measurement errors, which are known to be approximately Normally distributed.
- Our sample mean and standard deviation are

xbar s ## 1 1.069 0.006348

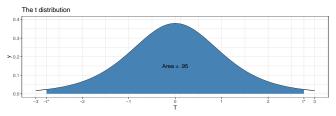
The Critical Value

• We need the t^* critical value for 95% confidence from the *t*-distribution with df = 4.

• We need the t^* critical value for 95% confidence from the *t*-distribution with df = 4.

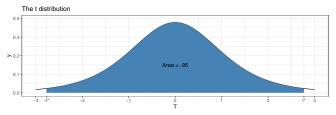


• We need the t^* critical value for 95% confidence from the *t*-distribution with df = 4.



• Note that t^* is the 0.975 quantile for the *t*-distribution with 4 degrees of freedom.

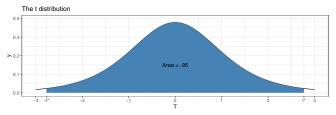
• We need the t^* critical value for 95% confidence from the *t*-distribution with df = 4.



- Note that t^* is the 0.975 quantile for the *t*-distribution with 4 degrees of freedom.
- Use the function qt to get quantiles for a *t*-distribution (just like qnorm for Normal) qt(p = 0.975, df = 4)

[1] 2.776

• We need the t^* critical value for 95% confidence from the *t*-distribution with df = 4.



- Note that t^* is the 0.975 quantile for the *t*-distribution with 4 degrees of freedom.
- Use the function qt to get quantiles for a t-distribution (just like qnorm for Normal) qt(p = 0.975, df = 4)
- ## [1] 2.776
- Note that the t* critical value of 95% confidence is larger than the z* critical value qnorm(p = 0.975)
- ## [1] 1.96

statistic
$$\pm t^* \cdot SE \qquad \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

statistic
$$\pm t^* \cdot SE \qquad \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

- · Previously, we found
- ## xbar snt_star
- ## 1 1.069 0.006348 5 2.776

statistic
$$\pm t^* \cdot SE \qquad \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

- · Previously, we found
- ## xbar s n t_star
 ## 1 1.069 0.006348 5 2.776
 - Putting all these values into place, our confidence interval is

$$1.069 \pm 2.776 \cdot \frac{0.006348}{\sqrt{5}}$$
 or 1.069 ± 0.0079

• The 95% confidence interval given by

statistic
$$\pm t^* \cdot SE \qquad \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

- · Previously, we found
- ## xbar snt_star ## 1 1.069 0.006348 5 2.776
 - Putting all these values into place, our confidence interval is

$$1.069 \pm 2.776 \cdot \frac{0.006348}{\sqrt{5}}$$
 or 1.069 ± 0.0079

• Thus, the range of plausible values for the OG of the beer is (1.061, 1.076) at 95% confidence.

statistic
$$\pm t^* \cdot SE \qquad \bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

- · Previously, we found
- ## xbar snt_star ## 1 1.069 0.006348 5 2.776
 - Putting all these values into place, our confidence interval is

$$1.069 \pm 2.776 \cdot \frac{0.006348}{\sqrt{5}}$$
 or 1.069 ± 0.0079

- Thus, the range of plausible values for the OG of the beer is (1.061, 1.076) at 95% confidence.
- As $\mu = 1.071$ is within this interval, it is plausible that the batch has the desired OG.

Comparison using infer

```
If we instead use infer...
```

```
set.seed(1908)
beer %>%
  specify(response = OG) %>%
  generate(reps = 5000, type = "bootstrap" ) %>%
  calculate(stat = "mean") %>%
  get_ci(level = .95, type = "percentile")
## # A tibble: 1 x 2
## lower_ci upper_ci
```

```
## <dbl> <dbl> ## 1 1.06 1.07
```

• The bootstrap interval is a bit narrower than the theory-based interval:

[1] 1.061 1.076

Hypothesis Tests

The *t*-test for Single Mean

To test $H_0: \mu = \mu_0$ against $H_a: \mu \neq \mu_0$ (or 1-sided alternatives), use the *t*-statistic

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

where \bar{x} and s are the mean and standard deviation of the sample with size n. The distribution of t is approximated by the t-distribution with n - 1 degrees of freedom.

The *t*-procedures are appropriate if $n \le 30$ and the population is approximately Normal, or if n > 30.

Consider the previous sample of 5 OG measurements from a batch of beer:

Consider the previous sample of 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Consider the previous sample of 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Determine whether this sample gives evidence that the OG isn't 1.071.

Consider the previous sample of 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Determine whether this sample gives evidence that the OG isn't 1.071.

• Our Null and Alternate Hypotheses are

 $H_0: \mu = 1.071$ $H_a: \mu \neq 1.071$

Consider the previous sample of 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Determine whether this sample gives evidence that the OG isn't 1.071.

• Our Null and Alternate Hypotheses are

 $H_0: \mu = 1.071$ $H_a: \mu \neq 1.071$

• Our sample mean and standard deviation are

xbar s ## 1 1.069 0.006348

Consider the previous sample of 5 OG measurements from a batch of beer:

[1] 1.067 1.060 1.077 1.072 1.067

Goal: Determine whether this sample gives evidence that the OG isn't 1.071.

• Our Null and Alternate Hypotheses are

$$H_0: \mu = 1.071$$
 $H_a: \mu \neq 1.071$

• Our sample mean and standard deviation are

xbar s ## 1 1.069 0.006348

• Therefore, our *t*-statistic is

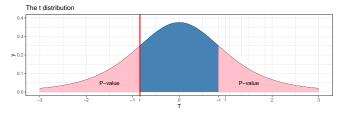
$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{1.0686 - 1.071}{\frac{0.0063}{\sqrt{5}}} = -0.845$$

The P-Value

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 4

The P-Value

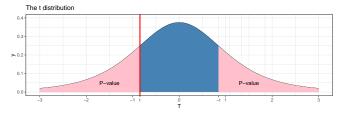
Plotting our *t*-statistic against the theoretical *t*-distribution with df = 4



- The exact P-value is twice the area left of *t*:
- ## [1] 0.4457
 - At significance $\alpha = 0.05$, we do not have enough evidence to reject the null hypothesis.

The P-Value

Plotting our *t*-statistic against the theoretical *t*-distribution with df = 4



- The exact P-value is twice the area left of *t*:
- ## [1] 0.4457
 - At significance $\alpha = 0.05$, we do not have enough evidence to reject the null hypothesis.
 - Our sample is consistent with a true mean OG of $\mu = 1.071$.

Comparison using infer

```
If we instead use infer...
set.seed(1908)
beer %>%
  specify(response = 0G) %>%
  hypothesize(null = "point", mu = 1.071) %>%
  generate(reps = 5000, type = "bootstrap" ) %>%
  calculate(stat = "mean") %>%
  get_p_value(obs_stat = 1.069, direction = "both")
```

A tibble: 1 x 1
p_value
<dbl>
1 0.498

Comparison using infer

```
If we instead use infer...
set.seed(1908)
beer %>%
specify(response = OG) %>%
hypothesize(null = "point", mu = 1.071) %>%
generate(reps = 5000, type = "bootstrap" ) %>%
calculate(stat = "mean") %>%
get_p_value(obs_stat = 1.069, direction = "both")
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.498
```

• The bootstrap p-value is a bit larger than the theory-based p-value:

[1] 0.4457

- In order to compute accurate confidence intervals and p-values, we need to ensure that appropriate conditions are met.
 - The strictness of these conditions depends on sample size.

- In order to compute accurate confidence intervals and p-values, we need to ensure that appropriate conditions are met.
 - The strictness of these conditions depends on sample size.
- Theory-based can be used if...
 - $n \ge 2$, and the population is Normal (or nearly so)
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed

- In order to compute accurate confidence intervals and p-values, we need to ensure that appropriate conditions are met.
 - The strictness of these conditions depends on sample size.
- Theory-based can be used if...
 - $n \ge 2$, and the population is Normal (or nearly so)
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed
- Simulation methods can be used if
 - $n \ge 15$, and the population is Normal or at most slightly skewed
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed

- In order to compute accurate confidence intervals and p-values, we need to ensure that appropriate conditions are met.
 - The strictness of these conditions depends on sample size.
- Theory-based can be used if...
 - $n \ge 2$, and the population is Normal (or nearly so)
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed
- Simulation methods can be used if
 - $n \ge 15$, and the population is Normal or at most slightly skewed
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed
- In general, for small sample sizes, neither method should be used if population does not appear Normal. But if it is Normal, theory-based methods will be more accurate.

- In order to compute accurate confidence intervals and p-values, we need to ensure that appropriate conditions are met.
 - The strictness of these conditions depends on sample size.
- Theory-based can be used if...
 - $n \ge 2$, and the population is Normal (or nearly so)
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed
- Simulation methods can be used if
 - $n \ge 15$, and the population is Normal or at most slightly skewed
 - $n \ge 30$, and the population appears at most moderately skewed
 - $n \ge 60$, and the population is not extremely skewed
- In general, for small sample sizes, neither method should be used if population does not appear Normal. But if it is Normal, theory-based methods will be more accurate.
- For moderate sample sizes with moderate skew, simulation-based methods will be more accurate

t- versus z-procedures

It is important to use the t-distribution (rather than the Normal distribution) for confidence intervals and hypothesis tests when the sample size is small.

t- versus z-procedures

It is important to use the *t*-distribution (rather than the Normal distribution) for confidence intervals and hypothesis tests when the sample size is small.

• To verify, we'll create 1000 95% confidence intervals using (a) the t-distribution and (b) the Normal distribution, and see how many contain the true population mean.

t- versus z-procedures

It is important to use the *t*-distribution (rather than the Normal distribution) for confidence intervals and hypothesis tests when the sample size is small.

- To verify, we'll create 1000 95% confidence intervals using (a) the t-distribution and (b) the Normal distribution, and see how many contain the true population mean.
- Suppose we have the following population distribution for measurement errors



mean error is 0, standard deviation of error is 0.01

10000 Samples

The following code collects 10000 samples from the population, each of size 5. It then computes the mean and standard deviation of each sample.

```
set.seed(1023)
samps<-population %>%
 rep sample n(size = 5, reps = 10000) %>%
 group_by(replicate) %>%
  summarize(avg = mean(error), st_dev = sd(error))
## # A tibble: 6 x 3
##
    replicate
                         st dev
                    avg
        <int>
                   <dbl>
                          <dbl>
##
            1 -0.00742 0.00554
## 1
## 2
            2 0.00133 0.00885
            3 0.00465 0.00840
## 3
## 4
            4 -0.00598 0.00924
## 5
            5 0.000320 0.00738
## 6
            6 -0.00148 0.00855
```

- The critical value for a 95% confidence interval using...
 - the standard Normal distribution is $z^* = 1.96$.
 - the *t* distribution with 4 df is $t^* = 2.776$.

- The critical value for a 95% confidence interval using...
 - the standard Normal distribution is $z^* = 1.96$.
 - the *t* distribution with 4 df is $t^* = 2.776$.

• The following code creates confidence intervals for each sample:

```
samps <- samps %>% mutate(
    lower_z = avg - 1.96*st_dev/sqrt(5), upper_z = avg + 1.96*st_dev/sqrt(5),
    lower_t = avg - 2.776*st_dev/sqrt(5), upper_t = avg + 2.776*st_dev/sqrt(5))
```

```
## # A tibble: 6 x 7
##
    replicate
                   avg st dev lower z upper z lower t upper t
                 <dbl> <dbl>
                                  <dbl>
                                           <db1>
                                                   <dbl>
                                                             <dbl>
##
        <int>
            1 -0.00742 0.00554 -0.0123 -0.00257 -0.0143
                                                         -0.000545
## 1
            2 0.00133 0.00885 -0.00643 0.00908 -0.00966
                                                         0.0123
## 2
## 3
            3 0.00465 0.00840 -0.00272 0.0120 -0.00578 0.0151
## 4
            4 -0.00598 0.00924 -0.0141 0.00212 -0.0174
                                                          0.00549
## 5
            5 0.000320 0.00738 -0.00615 0.00679 -0.00884 0.00949
## 6
            6 -0.00148 0.00855 -0.00897 0.00601 -0.0121
                                                          0.00913
```

Which intervals contain the true mean?

• Since we **know** the population has mean 0, we can determine whether each interval contains the true mean.

```
samps<-samps %>% mutate(
    z_success = ifelse(( lower_z < 0 & upper_z > 0 ) , "yes", "no"),
    t_success = ifelse(( lower_t < 0 & upper_t > 0 ) , "yes", "no"))
```

##	#	A tibble:	6 x 7					
##		replicate	lower_z	upper_z	lower_t	upper_t	z_success	t_success
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
##	1	1	-0.0123	-0.00257	-0.0143	-0.000545	no	no
##	2	2	-0.00643	0.00908	-0.00966	0.0123	yes	yes
##	3	3	-0.00272	0.0120	-0.00578	0.0151	yes	yes
##	4	4	-0.0141	0.00212	-0.0174	0.00549	yes	yes
##	5	5	-0.00615	0.00679	-0.00884	0.00949	yes	yes
##	6	6	-0.00897	0.00601	-0.0121	0.00913	yes	yes

Which intervals contain the true mean?

• Since we **know** the population has mean 0, we can determine whether each interval contains the true mean.

```
samps<-samps %>% mutate(
    z_success = ifelse(( lower_z < 0 & upper_z > 0 ) , "yes", "no"),
    t_success = ifelse(( lower_t < 0 & upper_t > 0 ) , "yes", "no"))
```

##	#	A tibble:	6 x 7					
##		replicate	lower_z	upper_z	lower_t	upper_t	z_success	t_success
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>
##	1	1	-0.0123	-0.00257	-0.0143	-0.000545	no	no
##	2	2	-0.00643	0.00908	-0.00966	0.0123	yes	yes
##	3	3	-0.00272	0.0120	-0.00578	0.0151	yes	yes
##	4	4	-0.0141	0.00212	-0.0174	0.00549	yes	yes
##	5	5	-0.00615	0.00679	-0.00884	0.00949	yes	yes
##	6	6	-0.00897	0.00601	-0.0121	0.00913	yes	yes

• What proportion of z- and t-intervals contain 0?

```
## # A tibble: 1 x 2
## z_rate t_rate
## <dbl> <dbl>
## 1 0.879 0.949
```