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The t-distribution Statistical Inference

Outline

In this lecture, we will. . .

• Investigate the t distribution.
• Create confidence intervals and perform hypothesis tests using t distribution for
sample means.
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The t-distribution Statistical Inference

Section 1

The t-distribution
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The t-distribution Statistical Inference

Distribution of Sample Means

• For quantitative data, the parameter of interest is often the population mean µ, which
may be estimated using a sample mean x̄ .

• By the Central Limit Theorem, the distribution of x̄ is approximately Normal, with
mean µ and standard error σ√

n
• where n is the sample size and σ is the population standard deviation
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Distribution of Sample Means

• Note that smaller σ and larger n both correspond to smaller standard error.
• As n increases, Normal approximation becomes more accurate, even if population is
skewed.
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The t-distribution Statistical Inference

Practical Considerations

• Suppose we have a single sample that we want to use to estimate µ. The standard
error for x̄ is

SE(x̄) =
σ
√

n
.

• But if we are estimating the population mean µ, we usually don’t know the value of σ.
• Instead, we can use the sample’s standard deviation s to estimate σ:

SE(x̄) ≈
s
√

n
.

• But this adds a new complication! The standardized statistic

z =
x̄ − µ

s√
n

no longer follows a standard Normal distribution!
• This is because both x̄ and s are now random variables, and so each adds variability to z.

• Instead, the standardized statistic z follows a t-distribution
• The t-distribution was first studied in 1908 by William Gosset, who published under the

pseudonym Student.
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The t-distribution Statistical Inference

The t-distribution

• Like the standard Normal distribution, a t-distribution is symmetric, single-peaked,
bell-shaped and centered at 0.
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The t distribution

• But a t-distribution has heavier tails than the Normal distribution.
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The t-distribution Statistical Inference

Degrees of Freedom

• The t-distribution is actually a parameterized family of distributions.

• The parameter for the t-distribution is called the degrees of freedom df and
determines the heaviness of tails
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Effect of Degrees of Freedom

• As degrees of freedom increases, the t distribution gets closer to the Normal
distribution.
• For df ≥ 30, the t distribution is nearly indistinguishable from the Normal
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The t-distribution Statistical Inference

Distribution of Sample Means using t-distribution

Theorem
Suppose a sample of size n is collected from a population with mean µ. The distribution of
the sample mean x̄ has the following characteristics:
• Center: The mean is equal to µ
• Spread: The standard error is equal to s√

n (where s is the sample st. dev.)
• Shape: The standardized statistic follows approximately a t-distribution with n − 1

degrees of freedom.
For small sample sizes (n ≤ 30), the t-distribution is only a good approximation if the
population distribution is approximately Normal.
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The t-distribution Statistical Inference

Section 2

Statistical Inference
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The t-distribution Statistical Inference

The Origin Story

A batch of stout beer is best when it has an original gravity (OG) close to 1.071. The
particular OG of a batch depends on a number factors (like temperature, rest time, recipe,
etc.).

If we can only obtain a small number of measurements from the batch, how can we
quantify whether the deviations we observe are due to random sampling, and not an actual
deviation in OG?
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The t-distribution Statistical Inference

Confidence Intervals

The t-procedures for Confidence Intervals
A C% confidence interval for a population mean µ using a sample of size n is

x̄ ± t∗ s√
n

where x̄ and s are the mean and standard deviation of the sample, and where t∗ is the
critical value for C% confidence in the t-distribution with n − 1 degrees of freedom.

The t-procedures are appropriate if n ≤ 30 and the population is approximately Normal, or
if n > 30.
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The t-distribution Statistical Inference

Confidence Interval for Original Gravity

Suppose we obtain the following 5 OG measurements from a batch of beer:

## [1] 1.067 1.060 1.077 1.072 1.067

Goal: Create a 95% confidence interval for the true OG of the batch.
• Since our sample size is small (n ≤ 30), we need to make sure our population is
approximately Normal.
• Fortunately, the only variability here is due to measurement errors, which are known to

be approximately Normally distributed.
• Our sample mean and standard deviation are

## xbar s
## 1 1.069 0.006348
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The t-distribution Statistical Inference

The Critical Value

• We need the t∗ critical value for 95% confidence from the t-distribution with df = 4.

Area = .95
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T

y

The t distribution

• Note that t∗ is the 0.975 quantile for the t-distribution with 4 degrees of freedom.
• Use the function qt to get quantiles for a t-distribution (just like qnorm for Normal)

qt(p = 0.975, df = 4)

## [1] 2.776

• Note that the t∗ critical value of 95% confidence is larger than the z∗ critical value
qnorm(p = 0.975)

## [1] 1.96
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The t-distribution Statistical Inference

The Confidence Interval

• The 95% confidence interval given by

statistic± t∗ · SE x̄ ± t∗ s√
n

• Previously, we found

## xbar s n t_star
## 1 1.069 0.006348 5 2.776
• Putting all these values into place, our confidence interval is

1.069± 2.776 ·
0.006348
√
5

or 1.069± 0.0079

• Thus, the range of plausible values for the OG of the beer is (1.061, 1.076) at 95%
confidence.
• As µ = 1.071 is within this interval, it is plausible that the batch has the desired OG.
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The t-distribution Statistical Inference

Comparison using infer

If we instead use infer. . .
set.seed(1908)
beer %>%

specify(response = OG) %>%
generate(reps = 5000, type = "bootstrap" ) %>%
calculate(stat = "mean") %>%
get_ci(level = .95, type = "percentile")

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 1.06 1.07

• The bootstrap interval is a bit narrower than the theory-based interval:
## [1] 1.061 1.076
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The t-distribution Statistical Inference

Hypothesis Tests

The t-test for Single Mean
To test H0 : µ = µ0 against Ha : µ 6= µ0 (or 1-sided alternatives), use the t-statistic

t = x̄ − µ0
s√
n

where x̄ and s are the mean and standard deviation of the sample with size n. The
distribution of t is approximated by the t-distribution with n − 1 degrees of freedom.

The t-procedures are appropriate if n ≤ 30 and the population is approximately Normal, or
if n > 30.
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The t-distribution Statistical Inference

Hypothesis Test for OG

Consider the previous sample of 5 OG measurements from a batch of beer:

## [1] 1.067 1.060 1.077 1.072 1.067

Goal: Determine whether this sample gives evidence that the OG isn’t 1.071.
• Our Null and Alternate Hypotheses are

H0 : µ = 1.071 Ha : µ 6= 1.071
• Our sample mean and standard deviation are

## xbar s
## 1 1.069 0.006348
• Therefore, our t-statistic is

t = x̄ − µ0
s√
n

= 1.0686− 1.071
0.0063√

5

= −0.845
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The t-distribution Statistical Inference

The P-Value

• Plotting our t-statistic against the theoretical t-distribution with df = 4

P−value P−value

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3t −t
T

y

The t distribution

• The exact P-value is twice the area left of t:
## [1] 0.4457
• At significance α = 0.05, we do not have enough evidence to reject the null
hypothesis.
• Our sample is consistent with a true mean OG of µ = 1.071.
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The t-distribution Statistical Inference

Comparison using infer

If we instead use infer. . .
set.seed(1908)
beer %>%

specify(response = OG) %>%
hypothesize(null = "point", mu = 1.071) %>%
generate(reps = 5000, type = "bootstrap" ) %>%
calculate(stat = "mean") %>%
get_p_value(obs_stat = 1.069, direction = "both")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.498

• The bootstrap p-value is a bit larger than the theory-based p-value:
## [1] 0.4457
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The t-distribution Statistical Inference

Theory vs. Simulation for 1 Mean

• In order to compute accurate confidence intervals and p-values, we need to ensure
that appropriate conditions are met.
• The strictness of these conditions depends on sample size.

• Theory-based can be used if. . .
• n ≥ 2, and the population is Normal (or nearly so)
• n ≥ 30, and the population appears at most moderately skewed
• n ≥ 60, and the population is not extremely skewed

• Simulation methods can be used if
• n ≥ 15, and the population is Normal or at most slightly skewed
• n ≥ 30, and the population appears at most moderately skewed
• n ≥ 60, and the population is not extremely skewed

• In general, for small sample sizes, neither method should be used if population does
not appear Normal. But if it is Normal, theory-based methods will be more accurate.
• For moderate sample sizes with moderate skew, simulation-based methods will be
more accurate
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The t-distribution Statistical Inference

t- versus z-procedures

It is important to use the t-distribution (rather than the Normal distribution) for
confidence intervals and hypothesis tests when the sample size is small.

• To verify, we’ll create 1000 95% confidence intervals using (a) the t-distribution and
(b) the Normal distribution, and see how many contain the true population mean.
• Suppose we have the following population distribution for measurement errors
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The t-distribution Statistical Inference

10000 Samples

The following code collects 10000 samples from the population, each of size 5. It then
computes the mean and standard deviation of each sample.
set.seed(1023)
samps<-population %>%

rep_sample_n(size = 5, reps = 10000) %>%
group_by(replicate) %>%
summarize(avg = mean(error), st_dev = sd(error))

## # A tibble: 6 x 3
## replicate avg st_dev
## <int> <dbl> <dbl>
## 1 1 -0.00742 0.00554
## 2 2 0.00133 0.00885
## 3 3 0.00465 0.00840
## 4 4 -0.00598 0.00924
## 5 5 0.000320 0.00738
## 6 6 -0.00148 0.00855
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The t-distribution Statistical Inference

The Confidence Intervals

• The critical value for a 95% confidence interval using. . .
• the standard Normal distribution is z∗ = 1.96.
• the t distribution with 4 df is t∗ = 2.776.

• The following code creates confidence intervals for each sample:
samps <- samps %>% mutate(

lower_z = avg - 1.96*st_dev/sqrt(5), upper_z = avg + 1.96*st_dev/sqrt(5),
lower_t = avg - 2.776*st_dev/sqrt(5), upper_t = avg + 2.776*st_dev/sqrt(5))

## # A tibble: 6 x 7
## replicate avg st_dev lower_z upper_z lower_t upper_t
## <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 -0.00742 0.00554 -0.0123 -0.00257 -0.0143 -0.000545
## 2 2 0.00133 0.00885 -0.00643 0.00908 -0.00966 0.0123
## 3 3 0.00465 0.00840 -0.00272 0.0120 -0.00578 0.0151
## 4 4 -0.00598 0.00924 -0.0141 0.00212 -0.0174 0.00549
## 5 5 0.000320 0.00738 -0.00615 0.00679 -0.00884 0.00949
## 6 6 -0.00148 0.00855 -0.00897 0.00601 -0.0121 0.00913
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The t-distribution Statistical Inference

Which intervals contain the true mean?

• Since we know the population has mean 0, we can determine whether each interval
contains the true mean.

samps<-samps %>% mutate(
z_success = ifelse(( lower_z < 0 & upper_z > 0 ) , "yes", "no"),
t_success = ifelse(( lower_t < 0 & upper_t > 0 ) , "yes", "no"))

## # A tibble: 6 x 7
## replicate lower_z upper_z lower_t upper_t z_success t_success
## <int> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 1 -0.0123 -0.00257 -0.0143 -0.000545 no no
## 2 2 -0.00643 0.00908 -0.00966 0.0123 yes yes
## 3 3 -0.00272 0.0120 -0.00578 0.0151 yes yes
## 4 4 -0.0141 0.00212 -0.0174 0.00549 yes yes
## 5 5 -0.00615 0.00679 -0.00884 0.00949 yes yes
## 6 6 -0.00897 0.00601 -0.0121 0.00913 yes yes

• What proportion of z- and t-intervals contain 0?

## # A tibble: 1 x 2
## z_rate t_rate
## <dbl> <dbl>
## 1 0.879 0.949

Nate Wells Inference for Means Math 141, 4/13/22 25 / 25



The t-distribution Statistical Inference

Which intervals contain the true mean?

• Since we know the population has mean 0, we can determine whether each interval
contains the true mean.

samps<-samps %>% mutate(
z_success = ifelse(( lower_z < 0 & upper_z > 0 ) , "yes", "no"),
t_success = ifelse(( lower_t < 0 & upper_t > 0 ) , "yes", "no"))

## # A tibble: 6 x 7
## replicate lower_z upper_z lower_t upper_t z_success t_success
## <int> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 1 -0.0123 -0.00257 -0.0143 -0.000545 no no
## 2 2 -0.00643 0.00908 -0.00966 0.0123 yes yes
## 3 3 -0.00272 0.0120 -0.00578 0.0151 yes yes
## 4 4 -0.0141 0.00212 -0.0174 0.00549 yes yes
## 5 5 -0.00615 0.00679 -0.00884 0.00949 yes yes
## 6 6 -0.00897 0.00601 -0.0121 0.00913 yes yes

• What proportion of z- and t-intervals contain 0?

## # A tibble: 1 x 2
## z_rate t_rate
## <dbl> <dbl>
## 1 0.879 0.949

Nate Wells Inference for Means Math 141, 4/13/22 25 / 25


	The t-distribution
	Statistical Inference

