Inference for Linear Regression

Nate Wells

Math 141, 4/18/22

Hypothesis Tests 0000000000 Conditions for Inference

Confidence Intervals 00000

Outline

In this lecture, we will...

- Review framework for linear regression
- Discuss inference procedures for linear models
- Review conditions for regression on linear models

Section 1

Simple Linear Regression

Nate Wells

Simple Linear	Regression
000000	

Hypothesis Tests 00000000000 Conditions for Inference

Confidence Intervals

Review of Simple Linear Regression

• Previously, we used linear regression to analyze the relationship between two quantitative variables

Simple	Linear	Regression
0000	00	

Hypothesis Tests

Conditions for Inference

Confidence Intervals 00000

Review of Simple Linear Regression

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$

Confidence Intervals

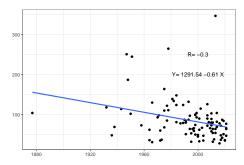
Review of Simple Linear Regression

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

Confidence Intervals 00000

Review of Simple Linear Regression

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.



Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
00●000	0000000000		00000

• To fit a linear model in R, use the 1m function

my_mod <- lm(Y ~ X, data = my_data)</pre>

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
00●000	000000000		00000

• To fit a linear model in R, use the lm function

my_mod <- lm(Y ~ X, data = my_data)</pre>

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

A tibble: 2 x 7 term estimate std error statistic p value lower ci upper ci ## <dbl> <dbl> ## <chr> <dbl> <dbl> <dbl> <dbl> ## 1 intercept 1292. 394. 3.28 0.001 509. 2074 ## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Conditions for Inference	Confidence Intervals 00000

• To fit a linear model in R, use the lm function

my_mod <- lm(Y ~ X, data = my_data)</pre>

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

A tibble: 2 x 7 estimate std error statistic p value lower ci upper ci ## term <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> ## 394 3.28 0.001 509. 2074 ## 1 intercept 1292. ## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

 Correlation can be computed using summarize and cor: my_data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.295
```

Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Conditions for Inference	Confidence Intervals 00000

• To fit a linear model in R, use the lm function

my_mod <- lm(Y ~ X, data = my_data)</pre>

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

A tibble: 2 x 7 estimate std error statistic p value lower ci upper ci ## term <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 394 3.28 0.001 509. 2074. ## 1 intercept 1292. ## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

 Correlation can be computed using summarize and cor: my_data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.295
```

• We can fit a linear model to any data set we want.

Simple Linear Regression 00●000	Hypothesis Tests 000000000	Conditions for Inference	Confidence Intervals

• To fit a linear model in R, use the lm function

my_mod <- lm(Y ~ X, data = my_data)</pre>

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

A tibble: 2 x 7 estimate std error statistic p value lower ci upper ci ## term <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 394 3.28 0.001 509. 2074. ## 1 intercept 1292. ## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

 Correlation can be computed using summarize and cor: my_data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.295
```

- We can fit a linear model to any data set we want.
 - But if we just have a *sample* of data, any trend we detect doesn't necessarily demonstrate that the trend exists in the *population*.

Nate Wells

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

Simple	Linear	Regression
0000	00	

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

Simple Linear Regression		
000000		

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

Simple Linear Regression		
000000		

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)

Confidence Intervals

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

Confidence Intervals 00000

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Confidence Intervals 00000

Statistical Inference for Regression

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

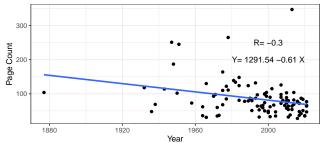
- Statistics from sample:
 - $\hat{\beta}_0$ (intercept)
 - $\hat{\beta}_1$ (slope)
 - R (correlation)
 - $\hat{\sigma}$ (standard error of residuals)

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
○○○○●○	0000000000		00000

• Earlier this year, Math 141 students collected data on several hundred senior theses from thesis tower.

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000000	0000000000		00000

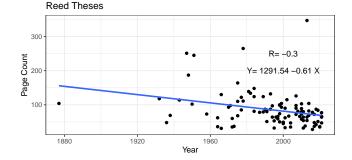
- Earlier this year, Math 141 students collected data on several hundred senior theses from thesis tower.
 - Page Count and Year Published for several of these theses are shown below:



Reed Theses

Simple Linear Regression 0000000	Hypothesis Tests 0000000000	Conditions for Inference	Confidence Intervals

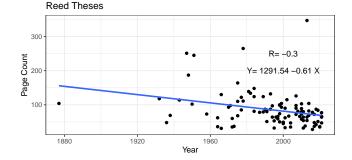
- Earlier this year, Math 141 students collected data on several hundred senior theses from thesis tower.
 - Page Count and Year Published for several of these theses are shown below:



• But this is just a sample of data. Would a different sample produce a different regression line?

Simple Linear Regression	Hypothesis Tests	Conditions for Inference	Confidence Intervals
0000000	000000000		00000

- Earlier this year, Math 141 students collected data on several hundred senior theses from thesis tower.
 - Page Count and Year Published for several of these theses are shown below:



- But this is just a sample of data. Would a different sample produce a different regression line?
 - Almost certainly!

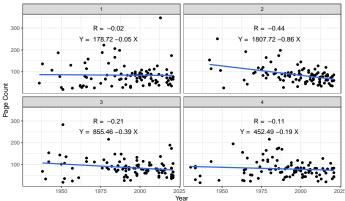
Nate Wells

Simple	Linear	Regression
0000	00	

Confidence Intervals 00000

Reed Thesis, More Samples

• Here are several more samples:



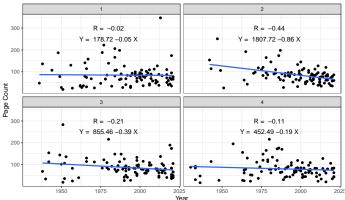
Reed Theses

Simple	Linear	Regression
0000	00	

Confidence Intervals 00000

Reed Thesis, More Samples

• Here are several more samples:



Reed Theses

• By how much will regression statistics (slope, intercept, standard deviation, correlation) change, just due to random sampling?

Confidence Intervals 00000

Section 2

Hypothesis Tests

Nate Wells

	Regression

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

• If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y among the values of X to produce a similar data set:

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y among the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from among all recorded page counts (without replacement)

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y among the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from among all recorded page counts (without replacement)
 - Compute the slope of the regression model for this synthetic data set

Confidence Intervals 00000

Hypothesis Tests for Regression

Hypotheses

- Null Hypothesis: Year X and Page Count Y are uncorrelated
- Alternative Hypothesis: Page Count and Year are negatively correlated

 $H_0:\beta_1=0 \qquad H_a:\beta_1<0$

Method

- If there is no relationship, then the pairing between X and Y is artificial and we can shuffle the values of Y among the values of X to produce a similar data set:
 - For each thesis, record the year of publications, but randomly choose a page count from among all recorded page counts (without replacement)
 - Compute the slope of the regression model for this synthetic data set
 - Repeat several times to assess variability in slope assuming H_0 is true

Hypothesis Tests

Conditions for Inference

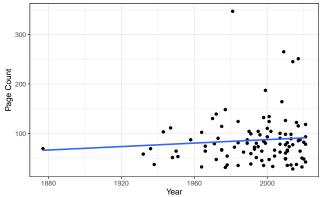
Confidence Intervals 00000

A Few Shuffles

<pre>theses_samp %>% specify(n_pages-year) %>% hypothesize(null = "independence") %>% generate(1, type = "permute")</pre>													
## #	A tibble	e: 6 x	3	##	#	A tibbl	e: 6 x	3	##	#	A tibble	e: 6 x	3
## #	Groups:	repl	licate [1]	##	#	Groups:	rep	licate [1]	##	#	Groups:	repl	icate [1]
##	n_pages	year	replicate	##		n_pages	year	replicate	##		n_pages	year	replicate
##	<dbl></dbl>	<dbl></dbl>	<int></int>	##		<dbl></dbl>	<dbl></dbl>	<int></int>	##		<dbl></dbl>	<dbl></dbl>	<int></int>
## 1	48	2020	1	##	1	78	2020	1	##	1	36	2020	1
## 2	54	1978	1	##	2	115	1978	1	##	2	38	1978	1
## 3	124	2001	1	##	3	64	2001	1	##	3	87	2001	1
## 4	36	2013	1	##	4	51	2013	1	##	4	32	2013	1
## 5	124	1984	1	##	5	82	1984	1	##	5	45	1984	1
## 6	90	2007	1	##	6	45	2007	1	##	6	97	2007	1

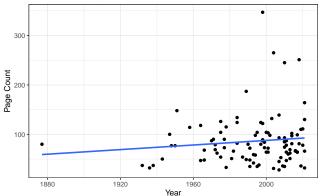
Confidence Intervals 00000

Scatterplots of Synthetic Data I



Confidence Intervals 00000

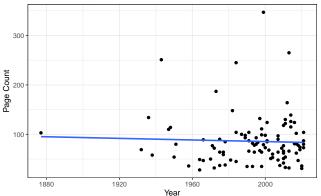
Scatterplots of Synthetic Data II



Reed Theses Synthetic

Confidence Intervals 00000

Scatterplots of Synthetic Data III



Reed Theses Synthetic

Note: location of individual points change, but general clusters do not.

Simple Linear Regression	Hypothesis Tests 0000000000	Conditions for Inference	Confidence Intervals 00000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

Hypothesis Tests	
0000000000	

Confidence Intervals

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

```
theses_samp %>%
specify(n_pages~year) %>%
hypothesize(null = "independence") %>%
generate(1000, type = "permute") %>%
calculate( stat = "slope")
```

Regression

Conditions for Inference

Confidence Intervals 00000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

```
theses_samp %>%
  specify(n_pages-year) %>%
  hypothesize(null = "independence") %>%
  generate(1000, type = "permute") %>%
  calculate( stat = "slope")
```

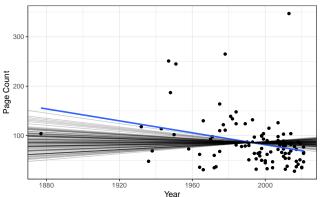
```
## Response: n_pages (numeric)
## Explanatory: year (numeric)
## Null Hypothesis: independence
## # A tibble: 6 x 2
##
     replicate
                   stat
##
         <int>
                  <dbl>
             1 - 0.225
## 1
## 2
             2 0.262
             3 -0.219
## 3
## 4
           4 0.00218
             5 -0.00447
## 5
             6 -0.146
## 6
```

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes



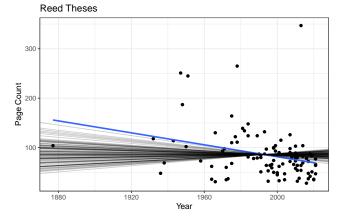
Reed Theses

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes



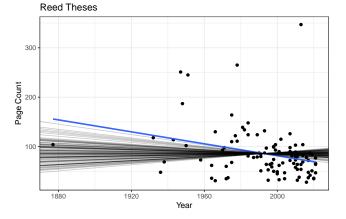
• Most lines are approximately horizontal. But some have positive or negative slope.

	Regression

Conditions for Inference

Confidence Intervals 00000

Visualizing 1000 Slopes



- Most lines are approximately horizontal. But some have positive or negative slope.
- The linear regression line for the original data is shown in blue.

Simple Linear Regression	Hypothesis Tests	
	0000000000	

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.61, direction = "left")

200 100 50 0 -0.5 stat

Simulation-Based Null Distribution

Simple Linear Regression	Hypothesis Tests	
	0000000000	

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.61, direction = "left")

Simulation-Based Null Distribution

null_slope %>% get_p_value(obs_stat = -0.61, direction = "left")

A tibble: 1 x 1
p_value
<dbl>
1 0.004

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals 00000

Simple Linear Regression	Hypothesis Tests 00000000●	Conditions for Inference	Confidence Intervals

- With a P-value less than $\alpha = 0.01$, we reject H_0 in favor of H_a .
 - A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.

Simple Linear Regression	Hypothesis Tests 000000000	Conditions for Inference	Confidence Intervals 00000

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals 00000

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.

Simple Linear Regression	Hypothesis Tests 00000000●	Conditions for Inference	Confidence Intervals 00000

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count **caused** by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.
 - Even if page count has truly decreased on average, page count doesn't necessarily indicate quality or standards.

Simple Linear Regression	Hypothesis Tests 000000000●	Conditions for Inference	Confidence Intervals 00000

- A slope like this is unlikely to have arisen due to chance if there were no relationship between Year and Page Count.
- The data does indeed suggest Page Count and Year are negatively correlated.
- Is decreased page count caused by decreasing standards over time? Very uncertain.
 - Perhaps changes in typesetting explain difference.
 - Perhaps different divisions have different typical lengths of theses, and divisional representation has changed over time.
 - Even if page count has truly decreased on average, page count doesn't necessarily indicate quality or standards.
 - Perhaps conditions for inference were not met!

Section 3

Conditions for Inference

Nate Wells

Confidence Intervals 00000

Conditions for Inference: LINE!

Confidence Intervals

Conditions for Inference: LINE!

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot

Confidence Intervals

Conditions for Inference: LINE!

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot
- **2** The observations should be independent of one another. (Independence)
 - Check using scatterplot/residual plot, as well as sample design
- O The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
 - Check using histogram of residuals

Confidence Intervals

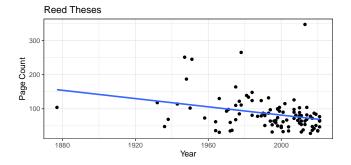
Conditions for Inference: LINE!

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot
- **2** The observations should be independent of one another. (Independence)
 - Check using scatterplot/residual plot, as well as sample design
- O The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
 - Check using histogram of residuals
- The variability of residuals should be roughly constant across entire data set. (Equal Variability)
 - Check using residual plot.

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Linear

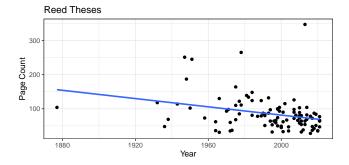


Data is not tightly clustered around line of best fit

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Linear



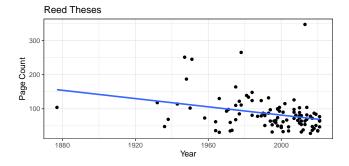
Data is not tightly clustered around line of best fit

• But this doesn't mean data is not linear. Just that residuals have high variance

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Linear



Data is not tightly clustered around line of best fit

• But this doesn't mean data is not linear. Just that residuals have high variance

```
## # A tibble: 1 x 1
## cor
## <dbl>
## 4 0.005
```

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Independence

• When students were tasked with sampling theses, they were asked to consider whether their method represented an SRS. Here are some methods used:

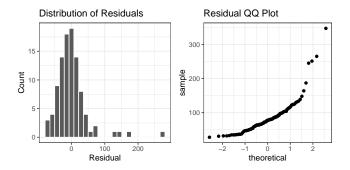
Confidence Intervals 00000

Checking Conditions: Independence

- When students were tasked with sampling theses, they were asked to consider whether their method represented an SRS. Here are some methods used:
- Sort theses in the online library catalog by year published and title. Generate 10 random numbers between 1 and 16159, and use these to select theses from catalog.
- **2** Use the library database with no order specified. Randomly generate a letter of the alphabet and pick the first thesis in the list whose title included the letter.
- e Generate 3 random letters of the alphabet, and choose 10 theses whose author's last name begins with the given letter.
- O Divide the thesis tower into 6 sections of approx. equal size. Randomly choose 1 section using 6-sided die. Then randomly choose a shelf in this section, followed by a row, and then a thesis on the row (using appropriately sized dice)

Conditions for Inference

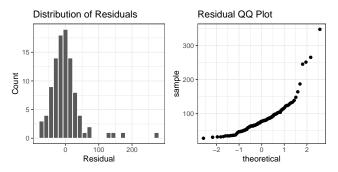
Confidence Intervals 00000



Conditions for Inference

Confidence Intervals

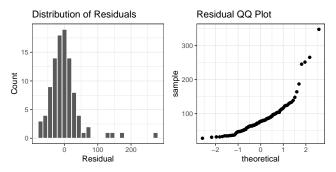
Checking Conditions: Normal



• The distribution does appears somewhat right-skewed, with a notable outliers on the right.

Conditions for Inference

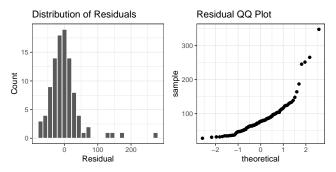
Confidence Intervals 00000



- The distribution does appears somewhat right-skewed, with a notable outliers on the right.
- This provides some evidence residuals are not Normally disributed.

Conditions for Inference

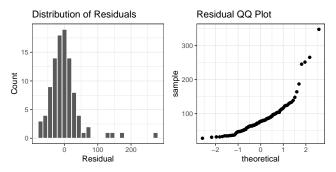
Confidence Intervals 00000



- The distribution does appears somewhat right-skewed, with a notable outliers on the right.
- This provides some evidence residuals are not Normally disributed.
- Do we discard conclusions entirely?

Conditions for Inference

Confidence Intervals 00000

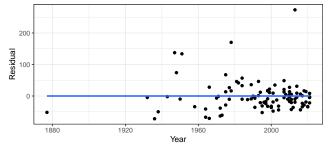


- The distribution does appears somewhat right-skewed, with a notable outliers on the right.
- This provides some evidence residuals are not Normally disributed.
- Do we discard conclusions entirely?
 - No. But this does warrant further research.

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Equal Variability



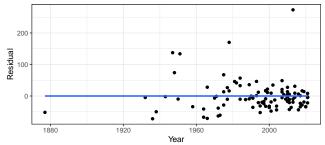
Residual Plot

Residuals appear to have constant variability between 1975 and 2020

Conditions for Inference

Confidence Intervals 00000

Checking Conditions: Equal Variability



Residual Plot

Residuals appear to have constant variability between 1975 and 2020

• However, theses prior to 1975 appear to have more spread (and almost all outliers come from this region of sparser data)

Section 4

Confidence Intervals

Nate Wells

Confidence Intervals

Confidence Intervals for Linear Models

• A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?
 - It's hard to say without knowing the variability in the year and in the page count data.
 - Remember that slope tells us the average increase in the response variable per unit increase in the explanatory variable

Confidence Intervals

Confidence Intervals for Linear Models

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose page count can be perfectly predicted by year (with no deviations or errors). What slope would we expect to find in the regression model?
 - It's hard to say without knowing the variability in the year and in the page count data.
 - Remember that slope tells us the average increase in the response variable per unit increase in the explanatory variable
- If we want to estimate the strength of the linear relationship between the two variables, we should instead create a confidence interval for the correlation *R*.

Simple Linear Regression	

Confidence Intervals

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

	Regression

Conditions for Inference

Confidence Intervals

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

```
theses samp %>%
  specify(n_pages~year) %>%
  generate(1, type = "bootstrap")
    A tibble: 6 x 3
               replicate [1]
##
   # Groups:
##
     replicate n_pages year
##
         <int>
                 <dbl> <dbl>
## 1
                     51
                        1991
             1
## 2
                     78
                       1987
             1
## 3
             1
                    103 2010
             1
                    81
                        2008
## 4
## 5
             1
                     36
                        1964
## 6
             1
                     37
                         1973
```

Linear	Regression

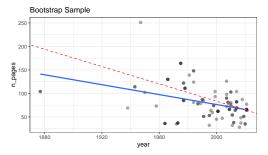
Conditions for Inference

Confidence Intervals

Bootstrapping for confidence intervals

- To approximate variablity in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

```
theses samp %>%
  specify(n_pages~year) %>%
  generate(1, type = "bootstrap")
     A tibble: 6 x 3
                replicate [1]
##
     Groups:
##
     replicate n_pages
                          year
          <int>
                   <dbl> <dbl>
##
## 1
                      51
                           1991
## 2
                      78
                          1987
## 3
                     103
                          2010
                      81
                           2008
## 4
              1
## 5
                      36
                          1964
               1
## 6
                      37
                           1973
##
   #
     A tibble:
                1 \times 2
##
     replicate
                    cor
                 <dbl>
##
          <int>
## 1
              1 - 0.382
```



- Dashed red line indicates regression line for original sample
- Darker points correspond to observations included in bootstrap more than once

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
theses_samp %>%
specify(n_pages~year) %>%
generate(1000, type = "bootstrap") %>%
calculate(stat = "correlation")
```

Conditions for Inference

Confidence Intervals

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
theses_samp %>%
specify(n_pages~year) %>%
generate(1000, type = "bootstrap") %>%
calculate(stat = "correlation")
```

```
## Response: n_pages (numeric)
## Explanatory: year (numeric)
## # A tibble: 6 x 2
##
     replicate
                  stat
         <int> <dbl>
##
## 1
             1 - 0.294
## 2
             2 - 0.242
## 3
             3 -0.235
## 4
          4 -0.0830
## 5
          5 -0.268
## 6
             6 - 0.407
```

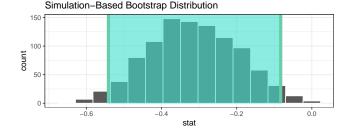
Simple Linear Regression			Confidence Intervals
000000	000000000	000000	00000

The Bootstrap Distribution for R

correlation_ci <- boot_slope %>% get_ci(level = .95, type = "percentile")
correlation_ci

A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)



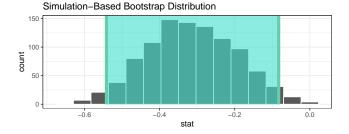
Simple Linear Regression			Confidence Intervals
000000	000000000	000000	00000

The Bootstrap Distribution for R

correlation_ci <- boot_slope %>% get_ci(level = .95, type = "percentile")
correlation_ci

A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)



• The original sample had correlation R = -0.3

• It is possible the true relationship between page count and year has between very weak (-0.08) and moderate (-0.54) negative correlation.

Nate Wells