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Outline

In this lecture, we will. . .
® Review framework for linear regression
® Discuss inference procedures for linear models

® Review conditions for regression on linear models
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Review of Simple Linear Regression

® Previously, we used linear regression to analyze the relationship between two
quantitative variables
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® Previously, we used linear regression to analyze the relationship between two
quantitative variables

® The strength and direction of the linear relationship is summarized by the correlation
coefficient R
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Linear Models in R

® To fit a linear model in R, use the 1m function
my_mod <- 1m(Y ~ X, my_data)
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Linear Models in R

® To fit a linear model in R, use the 1m function
my_mod <- 1m(Y ~ X, my_data)

® To view coefficients of the model, use get_regression_table from moderndive
get_regression_table(my_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212
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Linear Models in R

® To fit a linear model in R, use the 1m function
my_mod <- 1m(Y ~ X, my_data)

® To view coefficients of the model, use get_regression_table from moderndive
get_regression_table(my_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

® Correlation can be computed using summarize and cor:
my_data %>% summarize( cor(X,Y))

## # A tibble: 1 x 1

## R
## <dbl>
## 1 -0.295
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Linear Models in R

® To fit a linear model in R, use the 1m function
my_mod <- 1m(Y ~ X, my_data)

® To view coefficients of the model, use get_regression_table from moderndive
get_regression_table(my_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

® Correlation can be computed using summarize and cor:
my_data %>% summarize( cor(X,Y))

## # A tibble: 1 x 1

## R
## <dbl>
## 1 -0.295

® We can fit a linear model to any data set we want.
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Linear Models in R

® To fit a linear model in R, use the 1m function
my_mod <- 1m(Y ~ X, my_data)

® To view coefficients of the model, use get_regression_table from moderndive
get_regression_table(my_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 X -0.605 0.198 -3.06 0.003 -0.998 -0.212

® Correlation can be computed using summarize and cor:
my_data %>% summarize( cor(X,Y))

## # A tibble: 1 x 1

## R
## <dbl>
## 1 -0.295

® We can fit a linear model to any data set we want.

® But if we just have a sample of data, any trend we detect doesn't necessarily
demonstrate that the trend exists in the population.
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Statistical Inference for Regression

Goal: Use statistics calculated from data to make inferences about the nature of
parameters

® For regression, we can propose a model for the relationship between explanatory
variable X and response variable Y:

Y =80+ X +e e ~ N(0,0?)

® Parameters of interest:
® Bp (intercept)
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Statistical Inference for Regression

Goal: Use statistics calculated from data to make inferences about the nature of
parameters

® For regression, we can propose a model for the relationship between explanatory
variable X and response variable Y:

Y =80+ X +e e ~ N(0,0?)

® Parameters of interest:
® Bp (intercept)
* B: (slope)
® p (correlation)
® o (standard deviation of residuals)

® But in general, we won't ever be able to know the true values of these parameters. So
we estimate them based on sample data.

Y = Bo+ BiX
® Statistics from sample:

e o (intercept)

® fi (slope)
® R (correlation)
° A

& (standard error of residuals)
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Reed Thesis

® Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.
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Reed Thesis

® Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.

® Page Count and Year Published for several of these theses are shown below:
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® But this is just a sample of data. Would a different sample produce a different
regression line?
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Reed Thesis

® Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.

® Page Count and Year Published for several of these theses are shown below:
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® But this is just a sample of data. Would a different sample produce a different
regression line?

® Almost certainly!
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Reed Thesis, More Samples

® Here are several more samples:
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® By how much will regression statistics (slope, intercept, standard deviation, correlation)

change, just due to random sampling?
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Section 2

Hypothesis Tests
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Hypothesis Tests for Regression

Hypotheses
® Null Hypothesis: Year X and Page Count Y are uncorrelated

® Alternative Hypothesis: Page Count and Year are negatively correlated

Ho:ﬂlzo Ha:/B1<0
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Hypothesis Tests for Regression

Hypotheses
® Null Hypothesis: Year X and Page Count Y are uncorrelated

® Alternative Hypothesis: Page Count and Year are negatively correlated

Ho:ﬁlzo Ha:/B1<0

Method

® |f there is no relationship, then the pairing between X and Y is artificial and we can
shuffle the values of Y among the values of X to produce a similar data set:
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Hypotheses
® Null Hypothesis: Year X and Page Count Y are uncorrelated
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Ho:ﬁlzo Ha:/B1<0

Method

® |f there is no relationship, then the pairing between X and Y is artificial and we can
shuffle the values of Y among the values of X to produce a similar data set:

® For each thesis, record the year of publications, but randomly choose a page count from
among all recorded page counts (without replacement)

® Compute the slope of the regression model for this synthetic data set
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Hypothesis Tests for Regression

Hypotheses
® Null Hypothesis: Year X and Page Count Y are uncorrelated

® Alternative Hypothesis: Page Count and Year are negatively correlated

Ho:ﬁlzo Ha:/B1<0

Method

® |f there is no relationship, then the pairing between X and Y is artificial and we can
shuffle the values of Y among the values of X to produce a similar data set:

® For each thesis, record the year of publications, but randomly choose a page count from
among all recorded page counts (without replacement)

® Compute the slope of the regression model for this synthetic data set

® Repeat several times to assess variability in slope assuming Hy is true

Nate Wells Inference for Linear Regression Math 141, 4/18/22 10 /29



Hypothesis Tests
00e0000000

A Few Shuffles

theses_samp %>%
specify(n_pages~year) %>%

hypothesize ( "independence") %>%
generate (1, "permute")
## # A tibble: 6 x 3 ## # A tibble: 6 x 3 ## # A tibble: 6 x 3

## # Groups: replicate [1] ## # Groups: replicate [1] ## # Groups: replicate [1]
## n_pages year replicate ## n_pages year replicate ## n_pages year replicate

## <dbl> <dbl> <int> #i# <dbl> <dbl> <int> ## <dbl> <dbl> <int>
## 1 48 2020 1 ## 1 78 2020 1 ## 1 36 2020 1
## 2 54 1978 1 ## 2 115 1978 1 ## 2 38 1978 1
## 3 124 2001 1 ## 3 64 2001 1 ## 3 87 2001 1
## 4 36 2013 1 ## 4 51 2013 1 ## 4 32 2013 1
## 5 124 1984 1 ## 5 82 1984 1 ## 5 45 1984 1
## 6 90 2007 1 ## 6 45 2007 1 ## 6 97 2007 1
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Scatterplots of Synthetic Data |
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Scatterplots of Synthetic Data Il
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Note: location of individual points change, but general clusters do not.
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Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each
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Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

theses_samp %>%
specify(n_pages~year) %>%

hypothesize( "independence") %>%
generate (1000, "permute") %>%
calculate( "slope")
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Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

theses_samp %>%
specify(n_pages~year) %>%

hypothesize( "independence") %>%
generate (1000, "permute") %>%
calculate( "slope")

## Response: n_pages (numeric)
## Explanatory: year (numeric)
## Null Hypothesis: independence
## # A tibble: 6 x 2

## replicate stat
## <int> <dbl>
## 1 1 -0.225
## 2 2 0.262
## 3 3 -0.219
## 4 4 0.00218
## 5 5 -0.00447
## 6 6 -0.146
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Visualizing 1000 Slopes
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Visualizing 1000 Slopes
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® Most lines are approximately horizontal. But some have positive or negative slope.
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Visualizing 1000 Slopes
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® Most lines are approximately horizontal. But some have positive or negative slope.

® The linear regression line for the original data is shown in blue.
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The Sampling Distribution of by

null_slope %>% visualize()+shade_p_value(obs_stat = -0.61, direction = "left")

Simulation—Based Null Distribution
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The Sampling Distribution of by

null_slope %>% visualize()+shade_p_value(obs_stat = -0.61, direction = "left")

Simulation—Based Null Distribution
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1504
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Q
o
. III |||
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stat
null_slope %>% get_p_value(obs_stat = -0.61, direction = "left")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.004
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Conclusion

With a P-value less than o = 0.01, we reject Hp in favor of H.,.

Nate Wells Inference for Linear Regression



Hypothesis Tests
00000000 0e

Conclusion

With a P-value less than o = 0.01, we reject Hp in favor of H.,.

® A slope like this is unlikely to have arisen due to chance if there were no relationship
between Year and Page Count.
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With a P-value less than o = 0.01, we reject Hp in favor of H.,.

® A slope like this is unlikely to have arisen due to chance if there were no relationship
between Year and Page Count.

® The data does indeed suggest Page Count and Year are negatively correlated.
® |s decreased page count caused by decreasing standards over time? Very uncertain.
® Perhaps changes in typesetting explain difference.

® Perhaps different divisions have different typical lengths of theses, and divisional
representation has changed over time.
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Conclusion

With a P-value less than o = 0.01, we reject Hp in favor of H.,.

® A slope like this is unlikely to have arisen due to chance if there were no relationship
between Year and Page Count.

® The data does indeed suggest Page Count and Year are negatively correlated.
® |s decreased page count caused by decreasing standards over time? Very uncertain.
® Perhaps changes in typesetting explain difference.

® Perhaps different divisions have different typical lengths of theses, and divisional
representation has changed over time.

® Even if page count has truly decreased on average, page count doesn’t necessarily
indicate quality or standards.
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Conclusion

With a P-value less than o = 0.01, we reject Hp in favor of H.,.

® A slope like this is unlikely to have arisen due to chance if there were no relationship
between Year and Page Count.

® The data does indeed suggest Page Count and Year are negatively correlated.
® |s decreased page count caused by decreasing standards over time? Very uncertain.
® Perhaps changes in typesetting explain difference.

® Perhaps different divisions have different typical lengths of theses, and divisional
representation has changed over time.

® Even if page count has truly decreased on average, page count doesn’t necessarily
indicate quality or standards.

® Perhaps conditions for inference were not met!
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Section 3

Conditions for Inference
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® Check using residual plot.

Nate Wells Inference for Linear Regression



Conditions for Inference
00e000

Checking Conditions: Linear
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Data is not tightly clustered around line of best fit
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Checking Conditions: Linear
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Data is not tightly clustered around line of best fit

® But this doesn’t mean data is not linear. Just that residuals have high variance
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Checking Conditions: Linear

Reed Theses
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Data is not tightly clustered around line of best fit

® But this doesn’t mean data is not linear. Just that residuals have high variance
## # A tibble: 1 x 1

## cor
#it <dbl>
## 1 -0.295
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Checking Conditions: Independence

® When students were tasked with sampling theses, they were asked to consider whether
their method represented an SRS. Here are some methods used:
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Checking Conditions: Independence

® When students were tasked with sampling theses, they were asked to consider whether
their method represented an SRS. Here are some methods used:

@ Sort theses in the online library catalog by year published and title. Generate 10
random numbers between 1 and 16159, and use these to select theses from catalog.

® Use the library database with no order specified. Randomly generate a letter of the
alphabet and pick the first thesis in the list whose title included the letter.

©® Generate 3 random letters of the alphabet, and choose 10 theses whose author’s last
name begins with the given letter.

@ Divide the thesis tower into 6 sections of approx. equal size. Randomly choose 1
section using 6-sided die. Then randomly choose a shelf in this section, followed by a
row, and then a thesis on the row (using appropriately sized dice)
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
o
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.

® Do we discard conclusions entirely?
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Checking Conditions: Normal
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.

® Do we discard conclusions entirely?

® No. But this does warrant further research.

Nate Wells
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Checking Conditions: Equal Variability
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Residuals appear to have constant variability between 1975 and 2020
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Checking Conditions: Equal Variability
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Residuals appear to have constant variability between 1975 and 2020

® However, theses prior to 1975 appear to have more spread (and almost all outliers
come from this region of sparser data)

Nate Wells
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?

® |t's hard to say without knowing the variability in the year and in the page count data.

® Remember that slope tells us the average increase in the response variable per unit
increase in the explanatory variable

Nate Wells Inference for Linear Regression Math 141, 4/18/22 26 /29



Confidence Intervals
0O@000

Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?

® |t's hard to say without knowing the variability in the year and in the page count data.

® Remember that slope tells us the average increase in the response variable per unit
increase in the explanatory variable

® |f we want to estimate the strength of the linear relationship between the two
variables, we should instead create a confidence interval for the correlation R.

Nate Wells Inference for Linear Regression Math 141, 4/18/22 26 /29
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample

theses_samp %>%
specify(n_pages~year) %>%
generate(1, "bootstrap")
## # A tibble: 6 x 3

## # Groups: replicate [1]
#i# replicate n_pages year

## <int> <dbl> <dbl>
## 1 1 51 1991
## 2 1 78 1987
## 3 1 103 2010
## 4 1 81 2008
## 5 1 36 1964
## 6 1 37 1973

Nate Wells Inference for Linear Regression
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample

Bootstrap Sample

theses_samp %>% 250 °
specify(n_pages~year) %>%
generate(1, "bootstrap")

## # A tibble: 6 x 3
## # Groups: replicate [1]
#i# replicate n_pages year

## <int>  <dbl> <dbl>

## 1 1 51 1991

## 2 1 78 1987

## 3 1 103 2010

## 4 1 81 2008

## 5 1 36 1964 1880 1920 1960 2000
## 6 1 37 1973 year

## # A tibble: 1 x 2

## replicate cor ® Dashed red line indicates regression line for
## <int> <dbl> P

w1 1 -0.389 original sample

® Darker points correspond to observations
included in bootstrap more than once

Nate Wells Inference for Linear Regression
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Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

Nate Wells Inference for Linear Regression Math 141, 4/18/22 28 /29
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Bootstrap Distribution

Now we generate 1000 replicates, and compute the correlation for each

theses_samp %>%
specify(n_pages~year) %>%
generate (1000, "bootstrap") %>%
calculate( "correlation")

Nate Wells Inference for Linear Regression Math 141,
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Bootstrap Distribution correlation

Now we generate 1000 replicates, and compute the correlation for each

theses_samp %>%
specify(n_pages~year) %>%
generate (1000, "bootstrap") %>%
calculate( "correlation")

## Response: n_pages (numeric)
## Explanatory: year (numeric)
## # A tibble: 6 x 2

##  replicate stat

## <int> <dbl>
## 1 1 -0.294
## 2 2 -0.242
## 3 3 -0.235
## 4 4 -0.0830
## 5 5 -0.268
## 6 6 -0.407

Nate Wells Inference for Linear Regression
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The Bootstrap Distribution for R

correlation_ci <- boot_slope %>} get_ci(level = .95, type = "percentile')
correlation_ci

## # A tibble: 1 x 2

## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)

Simulation-Based Bootstrap Distribution
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The Bootstrap Distribution for R

correlation_ci <- boot_slope %>} get_ci(level = .95, type = "percentile')
correlation_ci

## # A tibble: 1 x 2

## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)

Simulation-Based Bootstrap Distribution
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® The original sample had correlation R = -0.3

® |t is possible the true relationship between page count and year has between very weak
(-0.08) and moderate (-0.54) negative correlation.

Nate Wells Inference for Linear Regression



	Simple Linear Regression
	Hypothesis Tests
	Conditions for Inference
	Confidence Intervals

