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In this lecture, we will. . .

• Define and explore Random Variables
• Investigate properties of the Normal Distribution
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Random Variables The Normal Distribution

Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

• We use capital letters at the end of the alphabet (W ,X ,Y ,Z) to denote random
variables.

• We use lowercase letters (w , x , y , z) to denote the particular values of a random variable

• We use equations to express events associated to random variables.
• I.e “X = 5” represents the event “The random variable X takes the value 5”.

• Events associated to variables have probabilities of occurring.
• P(X = 5) = .5 means X has 50% probability of taking the value 5.
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Random Variables The Normal Distribution

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.

• Examples of discrete variables:
• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.
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Random Variables The Normal Distribution

The Distribution of a Random Variable

• Recall that data variables have distributions, which tell us. . .
• the values the variable takes, and the frequency the variable takes those values.

• But random variables also have distributions, which tell us. . .
• the values the variable can take, and the probability the variable takes those values.

• Suppose I play a casino game, where that the amount of money I win (in cents) has
the following distribution:

value 1 5 10 25
probability .3 .4 .2 .1

• Suppose instead that I have a purse filled with the following 100 coins:

value 1 5 10 25
frequency 30 40 20 10

• Playing the casino game is very similar to drawing a random coin from the purse.
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Random Variables The Normal Distribution

Visualizing Discrete Distributions

• We often use bar charts to visualize the distribution of discrete random variables.

• Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:
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Distribution for number of 1's in 6 rolls

• Heights of bars are probabilities
• This is analogous to rescaling a histogram to have heights equal to proportions, rather

than counts
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Random Variables The Normal Distribution

Expected Value

The expected value (or mean) of a discrete random variable X is

E [X ] = x1P(X = x1) + x2P(X = x2) + · · ·+ xnP(X = xn) =
n∑

i=1

xi P(X = xi )

• The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.
• Suppose we have a data set consisting of values {1, 1, 2, 2, 2, 2, 3, 4, 5, 5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?

E [X ] =1P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5)

=1
2
10

+ 2
4
10

+ 3
1
10

+ 4
1
10

+ 5
2
10

=
27
10

= 2.7

• But also notice that

E [X ] =
1
10

(1 · 2 + 2 · 4 + 3 · 1 + 4 · 1 + 5 · 2)

=
1
10

(1 + 1 + 2 + 2 + 2 + 2 + 3 + 4 + 5 + 5)
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Random Variables The Normal Distribution

The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)
Let X be a random variable whose value depends on a random experiment. Suppose the
experiment is repeated n times and let x̄n denote the arithmetic mean of the values of X in
each trial. As n gets larger, the arithmetic mean x̄n approaches the expected value E [X ] of
that variable.
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Random Variables The Normal Distribution

A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?

• Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .

2.0

2.5

3.0

3.5

0 250 500 750 1000
number of die rolls

ar
ith

m
et

ic
 m

ea
n

Nate Wells Random Variables Math 141, 4/1/22 10 / 31



Random Variables The Normal Distribution

A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?
• Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .

2.0

2.5

3.0

3.5

0 250 500 750 1000
number of die rolls

ar
ith

m
et

ic
 m

ea
n

Nate Wells Random Variables Math 141, 4/1/22 10 / 31



Random Variables The Normal Distribution

A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?
• Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .

2.0

2.5

3.0

3.5

0 250 500 750 1000
number of die rolls

ar
ith

m
et

ic
 m

ea
n

Nate Wells Random Variables Math 141, 4/1/22 10 / 31



Random Variables The Normal Distribution

Variance and Standard Deviation

The variance of a discrete random variable X with mean µ is
Var(X) =(x1 − µ)2P(X = x1) + (x2 − µ)2P(X = x2) + · · · + (xn − µ)2P(X = xn)

=
n∑

i=1

(xi − µ)2P(X = xi )

• The variance of X is the sum the squared deviations of X from its mean µ, weighted
by the corresponding probabilities.

• Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.

• As with data variables, we define the standard deviation of a random variable X to
be

SD(X) =
√

Var(X)

• We often use σ2 to denote the variance and σ to denote the standard deviation of a
variable.
• Compute the standard deviation for a fair coin flip.
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Random Variables The Normal Distribution

The Distribution of a Continuous Variable

• Recall: A continuous random variable is one that any value in an interval of real
numbers.

• Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

• But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

• Instead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves
• The density curve for a continuous random variable X is the function f so that. . .

• The values of the function are always non-negative
• The total area under the function is 1
• The area over any interval is the probability that the variable is in that interval.
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Random Variables The Normal Distribution

Density Curve

• The density curve for the number of seconds T until a radioactive particle decays is:

f (t) = e−t for t ≥ 0
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Distribution for time until particle decays

• The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) =
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Distribution for time until particle decays

• The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = 0.34
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Random Variables The Normal Distribution

Mean and Standard Deviation for Continuous Variables

• Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

• But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

• Note that for any real number c, P(X = c) = 0. (Why?)
• Instead, we use the integral from calculus to define the mean and variance:

E [X ] =
∫

xf (x) dx Var(X) =
∫

(x − µ)2f (x) dx SD(X) =
√

Var(X)

• These integrals are tools to meaningfully average infinitely many values (but we won’t
compute any integrals in this class)

• As with discrete variables, the mean of a continuous variables represents its typical
value. The standard deviation represents the typical size of deviations from the mean.
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Random Variables The Normal Distribution

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

• Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:
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Random Variables The Normal Distribution

Section 2

The Normal Distribution
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Random Variables The Normal Distribution

The Normal Distribution

• The general Normal density curve with mean µ and standard deviation σ is given by
the formula

f (x) = 1√
2πσ2

e−(x−µ)2/2σ Don’t memorize this
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Random Variables The Normal Distribution

Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 4?

Prob = 0.14
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Random Variables The Normal Distribution

Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

• R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

• For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:

pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928

Area = 0.93
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Random Variables The Normal Distribution

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

• Answer: By computing two cumulative areas and subtracting the results!
Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
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Random Variables The Normal Distribution

Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
• Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )
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Random Variables The Normal Distribution

Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.

Area = 0.75
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The Normal Distribution

• That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )
qnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Random Variables The Normal Distribution

Scale and Translation Invariance

• Consider a Normal variable X with µ = 0 and σ = 1, and another Normal variable Y
with mean µ = 2 and σ = .25.
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The Normal Distribution

• The distributions for X and Y have different means and different heights and
widths. . .

• But otherwise have identitical shapes!
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The Normal Distribution of X

• The distributions for X and Y have different means and different heights and
widths. . .

• But otherwise have identitical shapes!
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Random Variables The Normal Distribution

Scale and Translation Invariance

• Consider a Normal variable X with µ = 0 and σ = 1, and another Normal variable Y
with mean µ = 2 and σ = .25.

Y

0.0

0.2

0.4

0.6

0.8

1 2 3
X

P
ro

ba
bi

lit
y

The Normal Distribution of X

• The distributions for X and Y have different means and different heights and
widths. . .

• But otherwise have identical shapes!
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Random Variables The Normal Distribution

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)
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