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In this lecture, we will. . .
® Define and explore Random Variables

® |nvestigate properties of the Normal Distribution
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Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

Nate Wells Random Variables



Random Variables
0O@0000000000000

Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

® We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random
variables.

® We use lowercase letters (w, x, y, z) to denote the particular values of a random variable
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Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

® We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random
variables.

® We use lowercase letters (w, x, y, z) to denote the particular values of a random variable

® We use equations to express events associated to random variables.

® |.e "X = 5" represents the event “The random variable X takes the value 5".
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Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

® We use capital letters at the end of the alphabet (W, X, Y, Z) to denote random
variables.

® We use lowercase letters (w, x, y, z) to denote the particular values of a random variable
® We use equations to express events associated to random variables.

® |.e "X = 5" represents the event “The random variable X takes the value 5".
® Events associated to variables have probabilities of occurring.

® P(X =5) = .5 means X has 50% probability of taking the value 5.
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Types of Random Variables

There are two main types of random variables:
@ Discrete variables can take only finitely many different values.

® Continuous variables can take values equal to any real number in an interval.
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Types of Random Variables

There are two main types of random variables:
@ Discrete variables can take only finitely many different values.
® Continuous variables can take values equal to any real number in an interval.

® Examples of discrete variables:
® The number of credits a randomly chosen Reed student is taking.
® The number of vegetarians in a random sample of 10 people.

® The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.
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Types of Random Variables

There are two main types of random variables:
@ Discrete variables can take only finitely many different values.
® Continuous variables can take values equal to any real number in an interval.
® Examples of discrete variables:
® The number of credits a randomly chosen Reed student is taking.
® The number of vegetarians in a random sample of 10 people.
® The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.
® Examples of continuous variables:
® The temperature of my office at a particular time of the day.

® The amount of time it takes a radioactive particle to decay.
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Types of Random Variables

There are two main types of random variables:
@ Discrete variables can take only finitely many different values.
® Continuous variables can take values equal to any real number in an interval.
® Examples of discrete variables:
® The number of credits a randomly chosen Reed student is taking.
® The number of vegetarians in a random sample of 10 people.
® The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.
® Examples of continuous variables:
® The temperature of my office at a particular time of the day.
® The amount of time it takes a radioactive particle to decay.
® Some discrete variables can be well-described by continuous variables:
® The height of a random person selected from a large population.

® The proportion of heads in a long sequence of coin flips.
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The Distribution of a Random Variable

® Recall that data variables have distributions, which tell us. ..

® the values the variable takes, and the frequency the variable takes those values.
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The Distribution of a Random Variable

® Recall that data variables have distributions, which tell us. ..
® the values the variable takes, and the frequency the variable takes those values.
® But random variables also have distributions, which tell us. ..

® the values the variable can take, and the probability the variable takes those values.

Nate Wells Random Variables Math 141,



Random Variables
000@00000000000

The Distribution of a Random Variable

® Recall that data variables have distributions, which tell us. ..

® the values the variable takes, and the frequency the variable takes those values.

® But random variables also have distributions, which tell us. ..
® the values the variable can take, and the probability the variable takes those values.
® Suppose | play a casino game, where that the amount of money | win (in cents) has
the following distribution:

value |1 5 10 25
probability | 3 4 2 1
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The Distribution of a Random Variable

Recall that data variables have distributions, which tell us. ..

® the values the variable takes, and the frequency the variable takes those values.

But random variables also have distributions, which tell us. ..

® the values the variable can take, and the probability the variable takes those values.

® Suppose | play a casino game, where that the amount of money | win (in cents) has
the following distribution:

value |1 5 10 25
probability | 3 4 2 1

® Suppose instead that | have a purse filled with the following 100 coins:

value ‘ 1 5 10 25
frequency ‘ 30 40 20 10
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The Distribution of a Random Variable

Recall that data variables have distributions, which tell us. ..

® the values the variable takes, and the frequency the variable takes those values.

But random variables also have distributions, which tell us. ..

® the values the variable can take, and the probability the variable takes those values.

® Suppose | play a casino game, where that the amount of money | win (in cents) has
the following distribution:

value |1 5 10 25
probability | 3 4 2 1

® Suppose instead that | have a purse filled with the following 100 coins:

value ‘ 1 5 10 25
frequency ‘ 30 40 20 10

Playing the casino game is very similar to drawing a random coin from the purse.
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Visualizing Discrete Distributions

® \We often use bar charts to visualize the distribution of discrete random variables.
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Visualizing Discrete Distributions

® \We often use bar charts to visualize the distribution of discrete random variables.

® Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:

Distribution for number of 1's in 6 rolls
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Visualizing Discrete Distributions

® \We often use bar charts to visualize the distribution of discrete random variables.

® Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:

Distribution for number of 1's in 6 rolls

0.4+
0.3
2
%
8 0.2+
<)
o
0.1+
001 .
T T T T T T T
0 1 2 3 4 5 6

X
® Heights of bars are probabilities

® This is analogous to rescaling a histogram to have heights equal to proportions, rather
than counts
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Expected Value

The expected value (or mean) of a discrete random variable X is

EX]=xP(X =x1)+xP(X=x)+ - +xP(X=x)= ZX:'P(X =X
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Expected Value

The expected value (or mean) of a discrete random variable X is

EX]=xP(X =x1)+xP(X=x)+ - +xP(X=x)= ZX:'P(X =X

® The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.

Nate Wells
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Expected Value

The expected value (or mean) of a discrete random variable X is

E[X]=xP(X =x1)+xP(X=x)+" -+ x.P

ZX,

® The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.

I

® Suppose we have a data set consisting of values {1,1,2,2,2,2,3,4,5,5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?
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Expected Value

The expected value (or mean) of a discrete random variable X is

E[X]=xP(X =x1)+xP(X=x)+" -+ x.P

ZX,

® The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.

I

® Suppose we have a data set consisting of values {1,1,2,2,2,2,3,4,5,5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?

E[X] :lP(X = 1) + 2P(X =2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5)
2 27

1
1= 42— 37 4= 45 =2 =27
52 3G A T )
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Expected Value

The expected value (or mean) of a discrete random variable X is

E[X]=xP(X =x1)+xP(X=x)+" -+ x.P

EXI 71

® The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.

® Suppose we have a data set consisting of values {1,1,2,2,2,2,3,4,5,5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?
E[X] :lP(X = 1) + 2P(X =2)+3P(X = 3) + 4P(X = 4) + 5P(X = 5)
= + +3 +41+52*27*27
B 10 100 10 7
® But also notice that

1
EX] =15 (1:242:443:1+4:1+5:2)

1
:—0(1+1+2+2+2+2+3+4+5+5)
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The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.
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The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)

Let X be a random variable whose value depends on a random experiment. Suppose the

experiment is repeated n times and let X, denote the arithmetic mean of the values of X in
each trial. As n gets larger, the arithmetic mean X, approaches the expected value E[X] of
that variable.
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A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?
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A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?

® Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .
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A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?

® Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)

® The variance of X is the sum the squared deviations of X from its mean u, weighted
by the corresponding probabilities.
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)

® The variance of X is the sum the squared deviations of X from its mean u, weighted
by the corresponding probabilities.

® Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)

® The variance of X is the sum the squared deviations of X from its mean u, weighted
by the corresponding probabilities.

® Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.

® As with data variables, we define the standard deviation of a random variable X to
be
SD(X) = 4/ Var(X)
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)

® The variance of X is the sum the squared deviations of X from its mean u, weighted
by the corresponding probabilities.

® Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.

® As with data variables, we define the standard deviation of a random variable X to
be
SD(X) = 4/ Var(X)

® \We often use o2 to denote the variance and o to denote the standard deviation of a
variable.
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Variance and Standard Deviation

The variance of a discrete random variable X with mean p is

Var(X) =(a — u)?P(X = x1) + (x2 — 12 P(X = x2) + -+ + (xn — 1) P(X = xo)

® The variance of X is the sum the squared deviations of X from its mean u, weighted
by the corresponding probabilities.

® Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.

® As with data variables, we define the standard deviation of a random variable X to
be
SD(X) = 4/ Var(X)

® \We often use o2 to denote the variance and o to denote the standard deviation of a
variable.

® Compute the standard deviation for a fair coin flip.
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that. ..
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that. ..

® The values of the function are always non-negative
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that. ..
® The values of the function are always non-negative

® The total area under the function is 1
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The Distribution of a Continuous Variable

® Recall: A continuous random variable is one that any value in an interval of real
numbers.

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...
® The values of the function are always non-negative
® The total area under the function is 1

® The area over any interval is the probability that the variable is in that interval.
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

flty=e* fort >0
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:
flty=e* fort >0

Distribution for time until particle decays

2.0
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Math 141,
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:
flty=e* fort >0

Distribution for time until particle decays

2.0+

1.5+

1.0+

Density

0.5+

0.0+
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T
® The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) =
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:
flty=e* fort >0

Distribution for time until particle decays

2.0+

1.5+

1.0+

Density
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0.0 05 10 15 20
T
® The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = 0.34
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® Instead, we use the integral from calculus to define the mean and variance:

E[X] = / xf(x)dx  Var(X) = / (x — w)?f(x)dx  SD(X) = /Var(X)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® Instead, we use the integral from calculus to define the mean and variance:

E[X] = [ xf(x)dx Var(X) = /(X — p)?f(x) dx SD(X) = 4/ Var(X)

® These integrals are tools to meaningfully average infinitely many values (but we won't
compute any integrals in this class)

Nate Wells Random Variables Math 141,
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® Instead, we use the integral from calculus to define the mean and variance:

E[X] = [ xf(x)dx Var(X) = /(X — p)?f(x) dx SD(X) = 4/ Var(X)

® These integrals are tools to meaningfully average infinitely many values (but we won't
compute any integrals in this class)

® As with discrete variables, the mean of a continuous variables represents its typical
value. The standard deviation represents the typical size of deviations from the mean.
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

Nate Wells
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam

0.08 1

Probability
o o
o o
S (2}

o
o
Y]

0.00 1

5‘0 6‘0 7‘0 SIO 9‘0 1(‘)0

Nate Wells Random Variables



Random Variables
0000000000000 0e

Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam

0.08 1

Probability
o o
o o
S (2}

o
o
Y]

0.00 1

5‘0 6‘0 7‘0 SIO 9‘0 1(‘)0
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Section 2

The Normal Distribution
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The Normal Distribution

® The general Normal density curve with mean p and standard deviation o is given by
the formula

f(x) = ;e*(xf“y/hr Don’t memorize this

V2mo?
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The Normal Distribution

® The general Normal density curve with mean p and standard deviation o is given by
the formula

1 (x—nu)2/2
F(x) = ————e ()7/20 Don’t memorize this
V2mo?
The Normal Distribution
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 47
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 47

The Normal Distribution
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

® For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:
pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

® For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:
pnorm(q =1.5 , mean =0 , sd =1 )
## [1] 0.9331928

The Normal Distribution
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

® Answer: By computing two cumulative areas and subtracting the results!
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean O and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean O and standard

deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution
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0O0000@00000000

Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean O and standard

deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution
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Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean O and standard

deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution
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The Normal Distribution
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean O and standard
deviation 1.

pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )
## [1] 0.5318991
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.
The Normal Distribution
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0.04
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.

The Normal Distribution
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® That is, we want to find the .75 quantile (i.e. the 75th percentile)
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a

given cumulative area.
The Normal Distribution
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® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )
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The Normal Distribution
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a

given cumulative area.
The Normal Distribution

0.4+

Probability
o o
i i

o
[
L

0.04

-3 -2 -1 0

® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )

gnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a

given cumulative area.
The Normal Distribution

0.4+
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® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )

gnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Scale and Translation Invariance

® Consider a Normal variable X with =0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.
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Scale and Translation Invariance

® Consider a Normal variable X with =0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution
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Scale and Translation Invariance

® Consider a Normal variable X with =0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution
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® The distributions for X and Y have different means and different heights and
widths. . .

® But otherwise have identitical shapes!
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Scale and Translation Invariance

® Consider a Normal variable X with =0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution of X
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® The distributions for X and Y have different means and different heights and
widths. ..

® But otherwise have identitical shapes!
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Scale and Translation Invariance

® Consider a Normal variable X with =0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution of X

08
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g 4
a Y
02
0.0
1 2 3
X

® The distributions for X and Y have different means and different heights and
widths. ..

® But otherwise have identical shapes!
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z= % is a Normal random variable with mean 0 and standard deviation 1.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z= % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z= % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.
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The Normal Distribution
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z= % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It's often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of p and o)
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