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Outline

In this lecture, we will. ..
® Review conditions for inference in simple linear models
® (Create confidence intervals for parameters of linear models
® Discuss theory-based methods for regression
® Review framework for multilinear regression

® Discuss inference procedures for MLR models
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Confidence Intervals
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Reed Thesis

® Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.
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Reed Thesis

® Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.

® Page Count and Year Published for several of these theses are shown below:

Reed Theses
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?
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Confidence Intervals
00@000

Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?

® It's hard to say without knowing the variability in the year and in the page count data.

® Remember that slope tells us the average increase in the response variable per unit
increase in the explanatory variable

Nate Wells Inference for Multiple Linear Regression



Confidence Intervals
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Confidence Intervals for Linear Models

® A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

® Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?

® It's hard to say without knowing the variability in the year and in the page count data.

® Remember that slope tells us the average increase in the response variable per unit
increase in the explanatory variable

® |f we want to estimate the strength of the linear relationship between the two
variables, we should instead create a confidence interval for the correlation R.
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample

theses_samp %>%
specify(n_pages~year) %>%
generate(1, "bootstrap")
## # A tibble: 6 x 3

## # Groups: replicate [1]
#i# replicate n_pages year

## <int> <dbl> <dbl>
## 1 1 51 1991
## 2 1 78 1987
## 3 1 103 2010
## 4 1 81 2008
## 5 1 36 1964
## 6 1 37 1973
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Bootstrapping for confidence intervals

® To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

® This corresponds to sampling with replacement from the columns of the original sample

Bootstrap Sample

theses_samp %>% 250 °
specify(n_pages~year) %>%
generate(1, "bootstrap")

200

## # A tibble: 6 x 3
## # Groups: replicate [1]
#i# replicate n_pages year

## <int>  <dbl> <dbl>

## 1 1 51 1991

## 2 1 78 1987

## 3 1 103 2010

## 4 1 81 2008

## 5 1 36 1964 1880 1920 1960 2000
## 6 1 37 1973 year

## # A tibble: 1 x 2

## replicate cor ® Dashed red line indicates regression line for
## <int> <dbl> P

w1 1 -0.389 original sample

® Darker points correspond to observations
included in bootstrap more than once
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Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each
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Bootstrap Distribution

Now we generate 1000 replicates, and compute the correlation for each
theses_samp %>%

specify(n_pages~year) %>%

generate (1000, "bootstrap") %>%

calculate( "correlation")
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Bootstrap Distribution correlation

Now we generate 1000 replicates, and compute the correlation for each

theses_samp %>%
specify(n_pages~year) %>%
generate (1000, "bootstrap") %>%
calculate( "correlation")

## Response: n_pages (numeric)
## Explanatory: year (numeric)
## # A tibble: 6 x 2

##  replicate stat

## <int> <dbl>
## 1 1 -0.294
## 2 2 -0.242
## 3 3 -0.235
## 4 4 -0.0830
## 5 5 -0.268
## 6 6 -0.407
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The Bootstrap Distribution for R

correlation_ci <- boot_slope %>} get_ci(level = .95, type = "percentile')
correlation_ci

## # A tibble: 1 x 2

## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)

Simulation-Based Bootstrap Distribution
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The Bootstrap Distribution for R

correlation_ci <- boot_slope %>} get_ci(level = .95, type = "percentile')
correlation_ci

## # A tibble: 1 x 2

## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.542 -0.0829

boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)

Simulation-Based Bootstrap Distribution
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® The original sample had correlation R = -0.3

® |t is possible the true relationship between page count and year has between very weak
(-0.08) and moderate (-0.54) negative correlation.
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals
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Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

@ The relationship between explanatory and response variables must be approximately
linear. (Linear)

® Check using scatterplot/residual plot
® The observations should be independent of one another. (Independence)
® Check using scatterplot/residual plot, as well as sample design

©® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

® Check using histogram of residuals

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® Check using residual plot.
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Checking Conditions: Linear

Reed Theses
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Data is not tightly clustered around line of best fit
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Checking Conditions: Linear

Reed Theses
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Data is not tightly clustered around line of best fit

® But this doesn’t mean data is not linear. Just that residuals have high variance
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Checking Conditions: Linear

Reed Theses

300

Page Count
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Data is not tightly clustered around line of best fit

® But this doesn’t mean data is not linear. Just that residuals have high variance
## # A tibble: 1 x 1

## cor
#it <dbl>
## 1 -0.295
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Checking Conditions: Independence

® When students were tasked with sampling theses, they were asked to consider whether
their method represented an SRS. Here are some methods used:
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Checking Conditions: Independence

® When students were tasked with sampling theses, they were asked to consider whether
their method represented an SRS. Here are some methods used:

@ Sort theses in the online library catalog by year published and title. Generate 10
random numbers between 1 and 16159, and use these to select theses from catalog.

® Use the library database with no order specified. Randomly generate a letter of the
alphabet and pick the first thesis in the list whose title included the letter.

©® Generate 3 random letters of the alphabet, and choose 10 theses whose author’s last
name begins with the given letter.

@ Divide the thesis tower into 6 sections of approx. equal size. Randomly choose 1
section using 6-sided die. Then randomly choose a shelf in this section, followed by a
row, and then a thesis on the row (using appropriately sized dice)
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.

® Do we discard conclusions entirely?
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Checking Conditions: Normal

Distribution of Residuals Residual QQ Plot
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® The distribution does appears somewhat right-skewed, with a notable outliers on the
right.

® This provides some evidence residuals are not Normally disributed.
® Do we discard conclusions entirely?

® No. But this does warrant further research.
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Checking Conditions: Equal Variability
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Residuals appear to have constant variability between 1975 and 2020
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Checking Conditions: Equal Variability

Residual Plot
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Residuals appear to have constant variability between 1975 and 2020

® However, theses prior to 1975 appear to have more spread (and almost all outliers
come from this region of sparser data)
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Theory-Based Methods
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1
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Theory-Based Methods
[e] lee)

Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.
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Theory-Based Methods
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.

® And the standard error is given by:
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[e] lee)

Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.

® And the standard error is given by:

N ! i — + i))?
SE(P1) = LZ’:I(y (B + Bux)) (DON’T MEMORIZE!)

n—2 211(X" —x)?
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.

® And the standard error is given by:

N ! i — + i))?
SE(P1) = LZ’:I(y (B + Bux)) (DON’T MEMORIZE!)

n—2 211(X" —x)?

® |n practice, we estimate [3o, 81 in the formula using 30731.
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.

® And the standard error is given by:

o ! (e + i))?
SE(p1) = LZ’:I(yH (o + Bua)) (DON'T MEMORIZE!)

n—2 Zi:l(x" —x)?

® |n practice, we estimate [3o, 81 in the formula using 30731.

® \We perfom a hypothesis test of Hy : 51 = 0 using the test statistic

sample stat — null value . Bl -0

SE SE
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

® |f LINE conditions are satisfied, then (31 is Normally distributed with mean f;.

® And the standard error is given by:

o ! (e + i))?
SE(p1) = LZ’:I(yH (o + Bua)) (DON'T MEMORIZE!)

n—2 Zi:l(x" —x)?

® |n practice, we estimate [3o, 81 in the formula using 30731.

® \We perfom a hypothesis test of Hy : 51 = 0 using the test statistic

sample stat — null value . Bl -0
SE - SE

® And we create a confidence interval for 1 using

sample stat + t* - SE = By +t*-SE
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Inference for Slope

® Can we make inference about the slope 1 of a linear model without using simulation?

® We need to know the mean, standard error, and shape of the sampling distribution for B1

If LINE conditions are satisfied, then 51 is Normally distributed with mean ;.

® And the standard error is given by:

o ! (e + i))?
SE(p1) = LZ’:I(yH (o + Bua)) (DON'T MEMORIZE!)

n—2 2;21(X" — %)

® |n practice, we estimate [3o, 81 in the formula using 30731.

® \We perfom a hypothesis test of Hy : 51 = 0 using the test statistic

sample stat — null value . Bl -0

SE SE

® And we create a confidence interval for 1 using

sample stat + t* - SE = By +t*-SE

In both cases, the reference distribution is the t-distribution with n — 2 degrees of
freedom.
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?
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Theory-Based Methods
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?

® Yes! Using the 1m function in R.
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?

® Yes! Using the 1m function in R.

thesis_mod <- 1lm(n_pages ~ year, theses_samp)
get_regression_table(theses_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 year -0.605 0.198 -3.06 0.003 -0.998 -0.212
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?

® Yes! Using the 1m function in R.
thesis_mod <- 1lm(n_pages ~ year, theses_samp)
get_regression_table(theses_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 year -0.605 0.198 -3.06 0.003 -0.998 -0.212

® The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?

® Yes! Using the 1m function in R.

thesis_mod <- 1lm(n_pages ~ year, theses_samp)
get_regression_table(theses_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 year -0.605 0.198 -3.06 0.003 -0.998 -0.212

® The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.

® The upper and lower bounds for the 95% confidence interval are lower_ci and
upper_ci
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Calculating test statistics and confidence intervals

® Can we get test statisics and confidence intervals for 81 without tedious calculation?

® Yes! Using the 1m function in R.

thesis_mod <- 1lm(n_pages ~ year, theses_samp)
get_regression_table(theses_mod)

## # A tibble: 2 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.

## 2 year -0.605 0.198 -3.06 0.003 -0.998 -0.212

® The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.

® The upper and lower bounds for the 95% confidence interval are lower_ci and
upper_ci

® The table also gives similar information for the intercept and hypothesis test
Ho : Bo = 0 (but this is less useful in practice)
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables

® The standard error for the sample correlation R when p =0 is

_ R2
SE(R)z,/ln_'z
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables

® The standard error for the sample correlation R when p =0 is
_R2
SE(R) = 4/ 1-R
n—2

® To test the hypothesis Hy : p = 0 against H, : p # 0, use the test statistic

__sample stat — null value  R—-0
a SE B 1-R?
n—2

where t follows the t-distribution with n — 2 degrees of freedom.
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables

The standard error for the sample correlation R when p =0 is
_R2
SE(R) = 4/ 1-R
n—2

® To test the hypothesis Hy : p = 0 against H, : p # 0, use the test statistic

__sample stat — null value  R—-0
a SE B 1-R?
n—2

where t follows the t-distribution with n — 2 degrees of freedom.

® There is a formula for confidence intervals, but it is considerably more complicated.
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables

The standard error for the sample correlation R when p =0 is
_R2
SE(R) = 4/ 1-R
n—2

® To test the hypothesis Hy : p = 0 against H, : p # 0, use the test statistic

__sample stat — null value  R—-0
a SE B 1-R?
n—2

where t follows the t-distribution with n — 2 degrees of freedom.

® There is a formula for confidence intervals, but it is considerably more complicated.

® This is because the sampling distribution for R is highly skewed unless R is close to 0
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Inference for Correlation

® Suppose we are interested in investigating the correlation p between two variables

The standard error for the sample correlation R when p =0 is
_R2
SE(R) = 4/ 1-R
n—2

® To test the hypothesis Hy : p = 0 against H, : p # 0, use the test statistic

__sample stat — null value  R—-0
a SE B 1-R?
n—2

where t follows the t-distribution with n — 2 degrees of freedom.
® There is a formula for confidence intervals, but it is considerably more complicated.
® This is because the sampling distribution for R is highly skewed unless R is close to 0

® Therefore, we can't use the Normal approximation for R unless either the sample size is
very large, or R is close to 0.

Nate Wells Inference for Multiple Linear Regression



Theory-Based Methods
[e]e]e] )

Inference for Correlation

Suppose we are interested in investigating the correlation p between two variables

The standard error for the sample correlation R when p =0 is

_ R2
SE(R)z,/ln_'z

To test the hypothesis Hy : p = 0 against H, : p # 0, use the test statistic

__sample stat — null value  R—-0
a SE B 1-R?
n—2

where t follows the t-distribution with n — 2 degrees of freedom.

There is a formula for confidence intervals, but it is considerably more complicated.

This is because the sampling distribution for R is highly skewed unless R is close to 0

Therefore, we can’t use the Normal approximation for R unless either the sample size is
very large, or R is close to 0.

This is one situation where the simulation-based method clearly outperforms the
theory-based method
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Review: Multiple Regression Model

® In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables Xi, Xz, ..., Xk:

Y =00+ -Xi+B2-Xo+ -+ Be- Xe
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Review: Multiple Regression Model

® In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables Xi, Xz, ..., Xk:

V=Bo+B X+ B Xot o+ B Xe
® We use the following R code to fit and summarize a linear model:

mod<-1m(Y ~ X1 + X2 + X3, my_data)
get_regression_table(mod)

## # A tibble: 4 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8

## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02
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Review: Multiple Regression Model

® In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables Xi, Xz, ..., Xk:

V=Bo+B X+ B Xot o+ B Xe
® We use the following R code to fit and summarize a linear model:

mod<-1m(Y ~ X1 + X2 + X3, my_data)
get_regression_table(mod)

## # A tibble: 4 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8

## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

® Which gives us our linear regression formula:

Y =326—-124-X;14+268-X>+32-X;
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Review: Multiple Regression Model

® In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables Xi, Xz, ..., Xk:

V=Bo+B X+ B Xot o+ B Xe
® We use the following R code to fit and summarize a linear model:

mod<-1m(Y ~ X1 + X2 + X3, my_data)
get_regression_table(mod)

## # A tibble: 4 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8

## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

® Which gives us our linear regression formula:

Y =326—-124-X;+2.68-X;+32-X3
® The slope on each variable indicates the changed in the predicted value of Y per unit
change in that variable, with all other variables held constant
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® How does page count vary across year of publication and division?
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® How does page count vary across year of publication and division?
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Reed Theses

® How does page count vary across year of publication and division?
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Reed Theses

® How does page count vary across year of publication and division?
theses_mlr <- Ilm(n_pages ~ year + division, theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9
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Reed Theses

® How does page count vary across year of publication and division?
theses_mlr <- Ilm(n_pages ~ year + division, theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

Pages = 1149 — 0.54 - Year 4+ 34.5- HSS +18.7 - ID 4+ 12.6 - LL — 11.2- MNS + 8.3 - PRPL
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Reed Theses

® How does page count vary across year of publication and division?
theses_mlr <- Ilm(n_pages ~ year + division, theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

Pages = 1149 — 0.54 - Year 4+ 34.5- HSS +18.7 - ID 4+ 12.6 - LL — 11.2- MNS + 8.3 - PRPL

® Which division is used as the baseline?
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Reed Theses

® How does page count vary across year of publication and division?
theses_mlr <- Ilm(n_pages ~ year + division, theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

Pages = 1149 — 0.54 - Year 4+ 34.5- HSS +18.7 - ID 4+ 12.6 - LL — 11.2- MNS + 8.3 - PRPL

® Which division is used as the baseline?
® Arts (because it's first alphabetically)
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® The regression table provides p-values for each slope in the model.
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® The regression table provides p-values for each slope in the model.

® But what hypotheses are being tested?
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.

® But what hypotheses are being tested?

® |In a MLR model, we are still interested in determining whether a slope 3; is 0.
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.
® But what hypotheses are being tested?
® |In a MLR model, we are still interested in determining whether a slope 3; is 0.

® But we want to investigate this slope in light of the other variables in the model.
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.
® But what hypotheses are being tested?
® |In a MLR model, we are still interested in determining whether a slope 3; is 0.
® But we want to investigate this slope in light of the other variables in the model.
® Each row corresponds to a hypothesis test of the form

Ho : Bi =0, given that other variables are included in the model

Math 141,
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.
® But what hypotheses are being tested?
® |In a MLR model, we are still interested in determining whether a slope 3; is 0.
® But we want to investigate this slope in light of the other variables in the model.
® Each row corresponds to a hypothesis test of the form
Ho : Bi =0, given that other variables are included in the model

® |.e. The year row corresponds to the test of
Ho : Byear = 0, given each division is included in the model

Math 141,
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.
® But what hypotheses are being tested?

® |In a MLR model, we are still interested in determining whether a slope 3; is 0.
® But we want to investigate this slope in light of the other variables in the model.

® Each row corresponds to a hypothesis test of the form

Ho : Bi =0, given that other variables are included in the model

® |.e. The year row corresponds to the test of

Ho : Byear = 0, given each division is included in the model

® Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.

Math 141,
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Hypothesis Testing

® The regression table provides p-values for each slope in the model.

® But what hypotheses are being tested?

In a MLR model, we are still interested in determining whether a slope ; is 0.

® But we want to investigate this slope in light of the other variables in the model.
® Each row corresponds to a hypothesis test of the form
Ho : Bi =0, given that other variables are included in the model
® |.e. The year row corresponds to the test of
Ho : Byear = 0, given each division is included in the model

® Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.

The standard error, statistic, and p-values are all calculated using theory-based
methods.

Nate Wells Inference for Multiple Linear Regression



Multiple Linear Regression
0000e0000

Hypothesis Testing

® The regression table provides p-values for each slope in the model.

® But what hypotheses are being tested?

In a MLR model, we are still interested in determining whether a slope ; is 0.

® But we want to investigate this slope in light of the other variables in the model.
® Each row corresponds to a hypothesis test of the form
Ho : Bi =0, given that other variables are included in the model
® |.e. The year row corresponds to the test of
Ho : Byear = 0, given each division is included in the model

® Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.

The standard error, statistic, and p-values are all calculated using theory-based
methods.

® But the formula is very complicated, requiring matrices and linear algebra (If interested,
take Math 392)

Nate Wells Inference for Multiple Linear Regression Math 141,
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

°

For which hypothesis tests would you reject Hy?
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

°

For which hypothesis tests would you reject Hy?
® What does this mean in context?
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

°

For which hypothesis tests would you reject Hy?
® What does this mean in context?

® For which would you fail to reject Hyp?
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

°

For which hypothesis tests would you reject Hy?
® What does this mean in context?

® For which would you fail to reject Hyp?
® What does this mean in context?
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Analysis

® Consider the regression table. . .

## # A tibble: 7 x 7

## term estimate std_error statistic p_value lower_ci upper_ci
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.

## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.63 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

°

For which hypothesis tests would you reject Hy?
® What does this mean in context?

® For which would you fail to reject Hyp?
® What does this mean in context?

® What is the relationship between the estimate, the std_error and lower_ci, upper_ci?
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Model Assumptions for MLR

® |n order to responsibly use MLR to make inference, we need. ..
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Model Assumptions for MLR

® |n order to responsibly use MLR to make inference, we need. ..
@ The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

@® The observations should be independent of one another. (Independence)

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

Inference for Multiple Linear Regression
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Model Assumptions for MLR

® |n order to responsibly use MLR to make inference, we need. ..
@ The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

@® The observations should be independent of one another. (Independence)

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® How do we check some of these conditions? Why can't we create a scatterplot of
residuals as we did for SLR?
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Model Assumptions for MLR

® |n order to responsibly use MLR to make inference, we need. ..
@ The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

@® The observations should be independent of one another. (Independence)

® The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

© The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

® How do we check some of these conditions? Why can't we create a scatterplot of
residuals as we did for SLR?

® |nstead, we will use a scatterplot of residuals vs predicted values
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Residuals vs Fitted Values

mod_res <- get_regression_points(theses_mlr)
mod_res %>%
select (n_pages, n_pages_hat, residual)

## # A tibble: 772 x 3

#it n_pages n_pages_hat residual
## <dbl> <dbl> <dbl>
## 1 84 72.5 11.5
## 2 139 88.2 50.8
## 3 50 82.2 -32.2
## 4 79 53.6 25.4
## 5 36 47.1  -11.1
## 6 80 54.1 25.9
## 7 134 67.6 66.4
## 8 58 75.2  -17.2
## 9 69 75.7 -6.74
## 10 74 85.4 -11.4
## # ... with 762 more rows

Nate Wells Inference for Multiple Linear Regression
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Residuals vs Fitted Values

mod_res %>% ggplot(aes( n_pages_hat, residual)
mod_res <- get_regression_points(theses_mlz geom_point ()+
mod_res %>% geom_smooth ( "Im", F)+
select (n_pages, n_pages_hat, residual) labs( "Residual vs Predicted")
## # A tibble: 772 x 3 Residual vs Predicted
## n_pages n_pages_hat residual 150 - : .
## <dbl> <dbl> <dbl> .
## 1 84 72.5 11.5 "
## 2 139 88.2 50.8 '
## 3 50 82.2 -32.2
## 4 79 53.6 25.4 e
## 5 36 47.1  -11.1 8
## 6 80 54.1 25.9 .
##t 7 134 67.6 66.4
## 8 58 75.2  -17.2
## 9 69 75.7 -6.74 *
## 10 74 85.4 -11.4
## # ... with 762 more rows o = 0 Pr

n_pages_hat
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Residuals vs Fitted Values

mod_res %>% ggplot(aes( n_pages_hat, residual)
mod_res <- get_regression_points(theses_mlr geom_point()+
mod_res %>% geom_smooth ( "Im", F)+
select (n_pages, n_pages_hat, residual) labs( "Residual vs Predicted")
## # A tibble: 772 x 3 Residual vs Predicted
#it n_pages n_pages_hat residual 150 . : .
## <dbl> <dbl> <dbl> .
## 1 84 72.5 11.5 "
## 2 139 88.2 50.8 '
## 3 50 82.2 -32.2
#t 4 79 53.6 25.4 R
## 5 36 4a7.1  -11.1 i
## 6 80 54.1 25.9 0
## 7 134 67.6 66.4
## 8 58 75.2 -17.2
## 9 69 75.7 -6.74 *
## 10 74 85.4 -11.4
## # ... with 762 more rows o = 0 Pr

n_pages_hat

® When analyzing residual vs. predicted plots, look for. ..
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Residuals vs Fitted Values

mod_res %>% ggplot(aes( n_pages_hat, residual)
mod_res <- get_regression_points(theses_mlr geom_point()+
mod_res %>% geom_smooth ( "Im", F)+
select (n_pages, n_pages_hat, residual) labs( "Residual vs Predicted")
## # A tibble: 772 x 3 Residual vs Predicted
#it n_pages n_pages_hat residual 150 . : .
## <dbl> <dbl> <dbl> .
## 1 84 72.5 11.5 "
## 2 139 88.2 50.8 '
## 3 50 82.2 -32.2
#t 4 79 53.6 25.4 R
## 5 36 4a7.1  -11.1 i
## 6 80 54.1 25.9 0
## 7 134 67.6 66.4
## 8 58 75.2 -17.2
## 9 69 75.7 -6.74 *
## 10 74 85.4 -11.4
## # ... with 762 more rows o = 0 Pr

n_pages_hat

® When analyzing residual vs. predicted plots, look for. ..
® Non-linear patterns
® [Increasing variability across range of predicted values
® OQutliers with atypical predicted value or large residual
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Distribution of Residuals

® We can still look at the histogram and QQ Plot of residuals, as we did for SLR:
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Distribution of Residuals

® We can still look at the histogram and QQ Plot of residuals, as we did for SLR:

ggplot (mod_res, aes(x = residual))+ ggplot (mod_res, aes(sample
geom_histogram(bins = 30, color = "white")+ geom_point (stat = "qq")+

labs(title = "Histogram of Residuals") labs(title = "QQ Plot of Residuals")

QQ Plot of Residuals

= residual))+

Histogram of Residuals
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Distribution of Residuals

® We can still look at the histogram and QQ Plot of residuals, as we did for SLR:

ggplot (mod_res, aes( residual) )+

ggplot (mod_res, aes( residual))+
geom_histogram( 30, "white")+ geom_point ( "qq")+
labs( "Histogram of Residuals") labs( "QQ Plot of Residuals")

Histogram of Residuals QQ Plot of Residuals

51 ve o
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:
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2 o 2
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® We see some evidence that residuals are not Normally distributed (right-skew)

Nate Wells
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