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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Outline

In this lecture, we will. . .
• Review conditions for inference in simple linear models
• Create confidence intervals for parameters of linear models
• Discuss theory-based methods for regression
• Review framework for multilinear regression
• Discuss inference procedures for MLR models
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Section 1

Confidence Intervals
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Reed Thesis

• Earlier this year, Math 141 students collected data on several hundred senior theses
from thesis tower.

• Page Count and Year Published for several of these theses are shown below:
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Confidence Intervals for Linear Models

• A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

• Suppose page count can be perfectly predicted by year (with no deviations or errors).
What slope would we expect to find in the regression model?

• It’s hard to say without knowing the variability in the year and in the page count data.
• Remember that slope tells us the average increase in the response variable per unit

increase in the explanatory variable

• If we want to estimate the strength of the linear relationship between the two
variables, we should instead create a confidence interval for the correlation R.
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Bootstrapping for confidence intervals

• To approximate variablity in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

• This corresponds to sampling with replacement from the columns of the original sample

theses_samp %>%
specify(n_pages~year) %>%
generate(1, type = "bootstrap")

## # A tibble: 6 x 3
## # Groups: replicate [1]
## replicate n_pages year
## <int> <dbl> <dbl>
## 1 1 51 1991
## 2 1 78 1987
## 3 1 103 2010
## 4 1 81 2008
## 5 1 36 1964
## 6 1 37 1973
## # A tibble: 1 x 2
## replicate cor
## <int> <dbl>
## 1 1 -0.382
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• Dashed red line indicates regression line for
original sample

• Darker points correspond to observations
included in bootstrap more than once
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Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

theses_samp %>%
specify(n_pages~year) %>%
generate(1000, type = "bootstrap") %>%
calculate(stat = "correlation")

## Response: n_pages (numeric)
## Explanatory: year (numeric)
## # A tibble: 6 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.294
## 2 2 -0.242
## 3 3 -0.235
## 4 4 -0.0830
## 5 5 -0.268
## 6 6 -0.407
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The Bootstrap Distribution for R
correlation_ci <- boot_slope %>% get_ci(level = .95, type = "percentile")
correlation_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.542 -0.0829
boot_slope %>% visualize()+shade_ci(endpoints =correlation_ci)
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Simulation−Based Bootstrap Distribution

• The original sample had correlation R = -0.3
• It is possible the true relationship between page count and year has between very weak

(-0.08) and moderate (-0.54) negative correlation.
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Section 2

Conditions for Inference
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

1 The relationship between explanatory and response variables must be approximately
linear. (Linear)

• Check using scatterplot/residual plot

2 The observations should be independent of one another. (Independence)
• Check using scatterplot/residual plot, as well as sample design

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

• Check using histogram of residuals

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

• Check using residual plot.
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Checking Conditions: Linear

100

200

300

1880 1920 1960 2000
Year

P
ag

e 
C

ou
nt

Reed Theses

Data is not tightly clustered around line of best fit

• But this doesn’t mean data is not linear. Just that residuals have high variance
## # A tibble: 1 x 1
## cor
## <dbl>
## 1 -0.295
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Checking Conditions: Independence

• When students were tasked with sampling theses, they were asked to consider whether
their method represented an SRS. Here are some methods used:

1 Sort theses in the online library catalog by year published and title. Generate 10
random numbers between 1 and 16159, and use these to select theses from catalog.

2 Use the library database with no order specified. Randomly generate a letter of the
alphabet and pick the first thesis in the list whose title included the letter.

3 Generate 3 random letters of the alphabet, and choose 10 theses whose author’s last
name begins with the given letter.

4 Divide the thesis tower into 6 sections of approx. equal size. Randomly choose 1
section using 6-sided die. Then randomly choose a shelf in this section, followed by a
row, and then a thesis on the row (using appropriately sized dice)
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Checking Conditions: Normal
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Residual QQ Plot

• The distribution does appears somewhat right-skewed, with a notable outliers on the
right.
• This provides some evidence residuals are not Normally disributed.
• Do we discard conclusions entirely?

• No. But this does warrant further research.
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Checking Conditions: Equal Variability
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Residual Plot

Residuals appear to have constant variability between 1975 and 2020

• However, theses prior to 1975 appear to have more spread (and almost all outliers
come from this region of sparser data)
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Section 3

Theory-Based Methods
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Inference for Slope

• Can we make inference about the slope β1 of a linear model without using simulation?

• We need to know the mean, standard error, and shape of the sampling distribution for β̂1

• If LINE conditions are satisfied, then β̂1 is Normally distributed with mean β1.
• And the standard error is given by:

SE(β̂1) =

√
1

n − 2

∑n
i=1

(yi − (β0 + β1xi ))2∑n
i=1

(xi − x̄)2
(DON’T MEMORIZE!)

• In practice, we estimate β0, β1 in the formula using β̂0, β̂1.
• We perfom a hypothesis test of H0 : β1 = 0 using the test statistic

t =
sample stat − null value

SE
=
β̂1 − 0

SE

• And we create a confidence interval for β1 using
sample stat ± t∗ · SE = β̂1 ± t∗ · SE

• In both cases, the reference distribution is the t-distribution with n − 2 degrees of
freedom.
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Calculating test statistics and confidence intervals

• Can we get test statisics and confidence intervals for β1 without tedious calculation?

• Yes! Using the lm function in R.
thesis_mod <- lm(n_pages ~ year, data = theses_samp)
get_regression_table(theses_mod)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1292. 394. 3.28 0.001 509. 2074.
## 2 year -0.605 0.198 -3.06 0.003 -0.998 -0.212

• The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.
• The upper and lower bounds for the 95% confidence interval are lower_ci and

upper_ci

• The table also gives similar information for the intercept and hypothesis test
H0 : β0 = 0 (but this is less useful in practice)
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Inference for Correlation

• Suppose we are interested in investigating the correlation ρ between two variables

• The standard error for the sample correlation R when ρ = 0 is

SE(R) =

√
1 − R2

n − 2

• To test the hypothesis H0 : ρ = 0 against Ha : ρ 6= 0, use the test statistic

t =
sample stat − null value

SE
=

R − 0√
1−R2
n−2

where t follows the t-distribution with n − 2 degrees of freedom.
• There is a formula for confidence intervals, but it is considerably more complicated.

• This is because the sampling distribution for R is highly skewed unless R is close to 0
• Therefore, we can’t use the Normal approximation for R unless either the sample size is

very large, or R is close to 0.
• This is one situation where the simulation-based method clearly outperforms the

theory-based method
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Section 4

Multiple Linear Regression

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 19 / 27



Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Review: Multiple Regression Model

• In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables X1,X2, . . . ,Xk :

Ŷ = β0 + β1 · X1 + β2 · X2 + · · ·+ βk · Xk

• We use the following R code to fit and summarize a linear model:
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)

## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8
## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

• Which gives us our linear regression formula:

Ŷ = 3.26− 1.24 · X1 + 2.68 · X2 + 3.2 · X3
• The slope on each variable indicates the changed in the predicted value of Y per unit
change in that variable, with all other variables held constant
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Reed Theses

• How does page count vary across year of publication and division?
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Reed Theses

• How does page count vary across year of publication and division?

theses_mlr <- lm(n_pages ~ year + division, data = theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.
## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.53 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

Pages = 1149 − 0.54 · Year + 34.5 · HSS + 18.7 · ID + 12.6 · LL − 11.2 · MNS + 8.3 · PRPL

• Which division is used as the baseline?
• Arts (because it’s first alphabetically)
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Hypothesis Testing

• The regression table provides p-values for each slope in the model.

• But what hypotheses are being tested?

• In a MLR model, we are still interested in determining whether a slope βi is 0.
• But we want to investigate this slope in light of the other variables in the model.

• Each row corresponds to a hypothesis test of the form

H0 : βi = 0, given that other variables are included in the model

• I.e. The year row corresponds to the test of

H0 : βyear = 0, given each division is included in the model

• Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.
• The standard error, statistic, and p-values are all calculated using theory-based
methods.

• But the formula is very complicated, requiring matrices and linear algebra (If interested,
take Math 392)
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Analysis

• Consider the regression table. . .
## # A tibble: 7 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.
## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.53 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

• For which hypothesis tests would you reject H0?
• What does this mean in context?

• For which would you fail to reject H0?
• What does this mean in context?

• What is the relationship between the estimate, the std_error and lower_ci, upper_ci?
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Model Assumptions for MLR

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)
• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Residuals vs Fitted Values

mod_res <- get_regression_points(theses_mlr)
mod_res %>%

select(n_pages, n_pages_hat, residual)

## # A tibble: 772 x 3
## n_pages n_pages_hat residual
## <dbl> <dbl> <dbl>
## 1 84 72.5 11.5
## 2 139 88.2 50.8
## 3 50 82.2 -32.2
## 4 79 53.6 25.4
## 5 36 47.1 -11.1
## 6 80 54.1 25.9
## 7 134 67.6 66.4
## 8 58 75.2 -17.2
## 9 69 75.7 -6.74
## 10 74 85.4 -11.4
## # ... with 762 more rows

mod_res %>% ggplot(aes(x = n_pages_hat, y = residual))+
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Residual vs Predicted")
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Residual vs Predicted

• When analyzing residual vs. predicted plots, look for. . .
• Non-linear patterns
• Increasing variability across range of predicted values
• Outliers with atypical predicted value or large residual
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Confidence Intervals Conditions for Inference Theory-Based Methods Multiple Linear Regression

Distribution of Residuals

• We can still look at the histogram and QQ Plot of residuals, as we did for SLR:

ggplot(mod_res, aes(x = residual))+
geom_histogram(bins = 30, color = "white")+
labs(title = "Histogram of Residuals")
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Histogram of Residuals

ggplot(mod_res, aes(sample = residual))+
geom_point(stat = "qq")+
labs(title = "QQ Plot of Residuals")
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QQ Plot of Residuals

• We see some evidence that residuals are not Normally distributed (right-skew)
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Distribution of Residuals

• We can still look at the histogram and QQ Plot of residuals, as we did for SLR:
ggplot(mod_res, aes(x = residual))+

geom_histogram(bins = 30, color = "white")+
labs(title = "Histogram of Residuals")
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ggplot(mod_res, aes(sample = residual))+
geom_point(stat = "qq")+
labs(title = "QQ Plot of Residuals")
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