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Outline

In this lecture, we will. . .
• Review framework for multilinear regression
• Discuss inference procedures for MLR models
• Investigate tools for “Model Selection”
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Section 1

Multiple Linear Regression
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Review: Multiple Regression Model

• In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables X1,X2, . . . ,Xk :

Ŷ = β0 + β1 · X1 + β2 · X2 + · · ·+ βk · Xk

• We use the following R code to fit and summarize a linear model:
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)

## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8
## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

• Which gives us our linear regression formula:

Ŷ = 3.26− 1.24 · X1 + 2.68 · X2 + 3.2 · X3
• The slope on each variable indicates the changed in the predicted value of Y per unit
change in that variable, with all other variables held constant
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Reed Theses

• How does page count vary across year of publication and division?
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Reed Theses

• How does page count vary across year of publication and division?

theses_mlr <- lm(n_pages ~ year + division, data = theses)
get_regression_table(theses_mlr)

## # A tibble: 7 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.
## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.53 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

Pages = 1149 − 0.54 · Year + 34.5 · HSS + 18.7 · ID + 12.6 · LL − 11.2 · MNS + 8.3 · PRPL

• Which division is used as the baseline? What does the intercept represent?

• What does the coefficient of 34.5 on HSS mean in context?

• What does the coefficient of −0.54 on Year mean in context?
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Hypothesis Testing

• The regression table provides p-values for each slope in the model.

• But what hypotheses are being tested?

• In a MLR model, we are still interested in determining whether a slope βi is 0.
• But we want to investigate this slope in light of the other variables in the model.

• Each row corresponds to a hypothesis test of the form

H0 : βi = 0, given that other variables are included in the model

• I.e. The year row corresponds to the test of

H0 : βyear = 0, given each division is included in the model

• Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.
• The standard error, statistic, and p-values are all calculated using theory-based
methods.

• But the formula is very complicated, requiring matrices and linear algebra (If interested,
take Math 392)
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Analysis

• Consider the regression table. . .
## # A tibble: 7 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 1149. 126. 9.14 0 902. 1396.
## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.53 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

• For which hypothesis tests would you reject H0?
• What does this mean in context?

• For which would you fail to reject H0?
• What does this mean in context?

• What is the relationship between the estimate, the std_error and lower_ci, upper_ci?

• How does the coefficient on year in the MLR model compare to the coefficient on year in the
SLR model?
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## 1 intercept 1149. 126. 9.14 0 902. 1396.
## 2 year -0.54 0.063 -8.58 0 -0.664 -0.416
## 3 divisionHSS 34.5 5.61 6.16 0 23.5 45.5
## 4 divisionID 18.7 7.38 2.53 0.011 4.22 33.2
## 5 divisionLL 12.6 5.84 2.16 0.031 1.16 24.1
## 6 divisionMNS -11.2 5.50 -2.03 0.042 -22.0 -0.389
## 7 divisionPRPL 8.28 5.92 1.40 0.162 -3.34 19.9

• For which hypothesis tests would you reject H0?
• What does this mean in context?

• For which would you fail to reject H0?

• What does this mean in context?

• What is the relationship between the estimate, the std_error and lower_ci, upper_ci?

• How does the coefficient on year in the MLR model compare to the coefficient on year in the
SLR model?
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Section 2

Model Assumptions for MLR
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Model Assumptions

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)
• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 10 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Model Assumptions

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 10 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Model Assumptions

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)
• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 10 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Model Assumptions

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)
• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 10 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Residuals vs Fitted Values

mod_res <- get_regression_points(theses_mlr)
mod_res %>%

select(n_pages, n_pages_hat, residual)

## # A tibble: 772 x 3
## n_pages n_pages_hat residual
## <dbl> <dbl> <dbl>
## 1 84 72.5 11.5
## 2 139 88.2 50.8
## 3 50 82.2 -32.2
## 4 79 53.6 25.4
## 5 36 47.1 -11.1
## 6 80 54.1 25.9
## 7 134 67.6 66.4
## 8 58 75.2 -17.2
## 9 69 75.7 -6.74
## 10 74 85.4 -11.4
## # ... with 762 more rows

mod_res %>% ggplot(aes(x = n_pages_hat, y = residual))+
geom_point()+
geom_smooth(method = "lm", se = F)+
labs(title = "Residual vs Predicted")

−50

0

50

100

150

50 75 100 125
n_pages_hat

re
si

du
al

Residual vs Predicted

• When analyzing residual vs. predicted plots, look for. . .
• Non-linear patterns
• Increasing variability across range of predicted values
• Outliers with atypical predicted value or large residual
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Distribution of Residuals

• We can still look at the histogram and QQ Plot of residuals, as we did for SLR:

ggplot(mod_res, aes(x = residual))+
geom_histogram(bins = 30, color = "white")+
labs(title = "Histogram of Residuals")
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Histogram of Residuals

ggplot(mod_res, aes(sample = residual))+
geom_point(stat = "qq")+
labs(title = "QQ Plot of Residuals")
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QQ Plot of Residuals

• We see some evidence that residuals are not Normally distributed (right-skew)
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Section 3

Testing Model Fit
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Testing For Model Fit

• Previously, we performed individual hypothesis tests to measure each explanatory
variable’s contribution to the model.

• But, when considering a model with many explanatory variables, we need to be cautious
about interpreting individual p-values.

• Suppose we had a model which contained 100 explanatory variables that were all
independent of the response.

• Approximately how many of the rows would have a p-value that is significant at the 0.05
level?

• So we may also be interested in assessing how well the overall model fits the data.
• We will test the following hypotheses:

H0 : β1 = β2 = · · · = βk = 0 Ha : At least one βi 6= 0

• i.e. We will assess how likely it was to obtain slope estimates β̂1, . . . , β̂k as large as
those observed, if all the explanatory variables were uncorrelated with the response.

• Note that β0 = 0 is not in the null hypothesis, since we are only looking for evidence
that at least one explanatory variable contributes to the response.
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Partitioning Variability

• Recall that the general form of a MLR model is

Y = β0 + β1 · X1 + β2 · X2 + · · ·+ βk · Xk + ε

• We can split the total variability in the response variable into two pieces:
• One representing the variability explained by the model
• Another representing the variability given by the errors

• We write. . .
SSTotal = SSModel + SSE

where. . .
SSTotal = Total Sum of Squares =

∑
(yi − ȳ)2

SSModel = Sum of Squares Explained by Model =
∑

(ŷi − ȳ)2

SSE = Sum of Squared Error =
∑

(yi − ŷi )2

• Note: SSE was the quantity we sought to minimize when fitting the least squares line.
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The F-Statistic

• A “good” model is one where almost all of the variability in response is due to the
model, rather than the error.

• Consider the following ratio:

F = SSModel
SSE · n − k − 1

k
• Good models should have values of F (much) larger than 1
• Models with variables uncorrelated with response should have values of F close to 1.
• The extra n−k−1

k eliminates bias due to the number of variables and observations

• Under the null hypothesis, F follows a certain theoretical distribution
• This distribution is called the F distribution, which has two parameters: (k, n − k − 1)
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Computing P-values

• We could compute the value of the F statistic by hand, and then compute the p-value
of the F stat using an appropriate function in R (like pf).

• BUT! The lm function already does all of this for us.
theses_mlr <- lm(n_pages ~ year + division, data = theses)
get_regression_summaries(theses_mlr)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.254 0.248 1319. 36.3 36.5 43.5 0 6 772

• The statistic in the get_regression_summaries table IS the F -statistic.
• The p_value is the p-value for this statistic in the appropriate F distribution.
• In the case of the Reed Theses, we see that the P-value for the F test is (very close
to) 0, and so we reject the null hypothesis.

• This sample gives evidence that at least one of the coefficients in the model is non-zero.
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Section 4

Model Selection
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R2 and Adjusted R2

• In addition to the F statistic, we’ve already seen another metric from the
goodness-of-fit of a multilinear model: R2

• Recall:
R2 =

SSModel
TSS

=
TSS − SSE

TSS
= 1 −

SSE
TSS

• That is, R2 measures the proportion of variability in the response explained by
variability in explanatory variables.

• If R2 ≈ 1, most of the variability in response is explained by linear relationship with
explanatory variables.

• While if R2 ≈ 0, almost none of the variability is explained by the model.

• But it turns out this formula gives a biased estimate of the variability in the
population explained by the model.
• Instead, we may use the adjusted R:

R2
adj = 1 −

(SSE
TSS

·
n − 1

n − k − 1

)
• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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Statistics Exams

• Consider a (hypothetical) statistics class of 30 students; suppose these students have
two midterm exams and a final.

• Can we use student scores on the midterms to predict their score on the final?

R = 0.81
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• Individually, both exams seem to have relatively strong linear relationship with the
final.

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 20 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Statistics Exams

• Consider a (hypothetical) statistics class of 30 students; suppose these students have
two midterm exams and a final.

• Can we use student scores on the midterms to predict their score on the final?

R = 0.81

60

70

80

90

60 70 80 90
exam1

fin
al

First Exam and Final

R = 0.74

60

70

80

90

60 70 80 90
exam2

fin
al

Second Exam and Final

• Individually, both exams seem to have relatively strong linear relationship with the
final.

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 20 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Statistics Exams

• Consider a (hypothetical) statistics class of 30 students; suppose these students have
two midterm exams and a final.

• Can we use student scores on the midterms to predict their score on the final?

R = 0.81

60

70

80

90

60 70 80 90
exam1

fin
al

First Exam and Final

R = 0.74

60

70

80

90

60 70 80 90
exam2

fin
al

Second Exam and Final

• Individually, both exams seem to have relatively strong linear relationship with the
final.

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 20 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Statistics Exams

• Consider a (hypothetical) statistics class of 30 students; suppose these students have
two midterm exams and a final.

• Can we use student scores on the midterms to predict their score on the final?

R = 0.81

60

70

80

90

60 70 80 90
exam1

fin
al

First Exam and Final

R = 0.74

60

70

80

90

60 70 80 90
exam2

fin
al

Second Exam and Final

• Individually, both exams seem to have relatively strong linear relationship with the
final.

Nate Wells Inference for Multiple Linear Regression Math 141, 4/20/22 20 / 25



Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Checking Conditions

• Are conditions for inference met?
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Building a MLR Model

• Let’s build the model:

scores_mod <- lm(final ~ exam1 + exam2, data = stat_scores)
get_regression_table(scores_mod)

## term estimate std_error statistic p_value lower_ci upper_ci
## 1 intercept 4.830 9.76 0.49 0.625 -15.20 24.86
## 2 exam1 0.836 0.27 3.11 0.004 0.28 1.39
## 3 exam2 0.099 0.25 0.40 0.694 -0.41 0.61

• Based on individual slope hypothesis tests. . .
• Exam1 is a significant predictor of final score, while Exam2 is not a significant predictor.

• Hang on. . . let’s build a simple linear model for final and exam2
scores_mod2 <- lm(final ~ exam2, data = stat_scores)
get_regression_table(scores_mod2)

## term estimate std_error statistic p_value lower_ci upper_ci
## 1 intercept 16.86 10.26 1.6 0.11 -4.2 37.9
## 2 exam2 0.78 0.14 5.7 0.00 0.5 1.1

• In the simple mode, exam 2 is a significant predictor of final.
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Correlated Predictors

• What is going on here? (Note that exam2 had a correlation of 0.74 with the final)

• Recall the form of the individual slope hypotheses:

H0 : βexam2 = 0, given that exam1 is in the model

• On its own, Exam 2 is helpful for predicting the final. But IF Exam 1 is already in the
model, Exam 2 is redundant.
• Note that Exam 1 and Exam 2 are highly correlated
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• Once exam 1 is known, exam 2 doesn’t contribute much additional information.
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Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Model Selection

• We have 3 models for predicting final exam score:
final ∼ exam1 final ∼ exam2 final ∼ exam1 + exam2

• To decide which is best, let’s perform F tests and calculate R2 and R2
adj :

get_regression_summaries(scores_mod1)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.66 0.648 35.5 5.96 6.17 54.4 0 1 30
get_regression_summaries(scores_mod2)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.541 0.525 48.0 6.93 7.17 33.0 0 1 30
get_regression_summaries(scores_mod)

## # A tibble: 1 x 9
## r_squared adj_r_squared mse rmse sigma statistic p_value df nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.662 0.637 35.3 5.94 6.26 26.5 0 2 30
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Multiple Linear Regression Model Assumptions for MLR Testing Model Fit Model Selection

Summary of Model Selection

• All 3 models had statistically significant F-statistics

• Model 1 had R2 = 0.66, Model 2 had R2 = 0.541, and the full Model had R2 = 0.662
• But Model 1 had R2

adj = 0.648, Model 2 had R2
adj = 0.525, and the full Model had

R2
adj = 0.637

• Since Model 1 had the highest adjusted R2 and was the simplest model considered,
Model 1 is likely the most accurate of the 3 models.
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