Chi-Square

Nate Wells

Math 141, 4/27/22

Outline

In this lecture, we will...

- Determine whether data follows a certain distribution
- Investigate the chi-squared distribution.
- Use the chi-squared statistic to determine whether two variables are independent

Section 1

The Chi-Squared Test for Goodness of Fit

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

• If the single variable has just 2 levels, we can consider the proportion p for one level

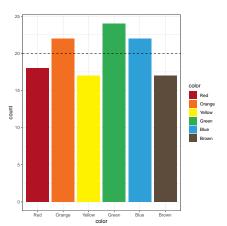
Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions p₁ - p₂.

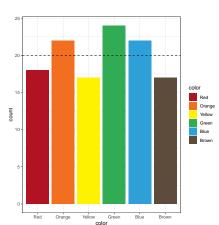
Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions p₁ - p₂.

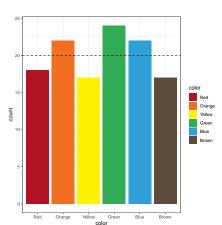
What can we do if one or both the variables are categorical with more than 2 levels?



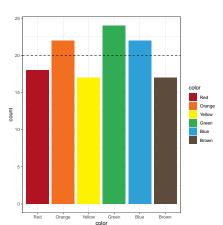
Suppose we are interested in whether the 6 colors of M&Ms appear with equal frequency. Data from 1 jumbo bag of 120 M&Ms is summarized in the graphic below:



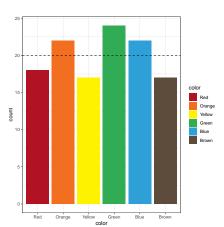
 Note that Green M&Ms exceed by the expected count by 20%.



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...
 - Would it really be unusual for 1 color to be over- or under-represented?

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

We want to test the following hypotheses:

$$\begin{split} H_0: & p_r = \frac{1}{6}, \; p_o = \frac{1}{6}, \; p_y = \frac{1}{6}, \; p_g = \frac{1}{6}, \; p_b = \frac{1}{6}, \; p_{br} = \frac{1}{6} \\ H_a: \; \text{at least one of the} \; p \neq \frac{1}{6} \end{split}$$

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

```
## # A tibble: 6 x 8
##
     color
            Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 expected observed
     <chr>
            <chr>
                      <chr>
                                <chr>>
                                          <chr>
                                                    <chr>>
                                                              <chr>>
                                                                        <chr>>
##
## 1 Blue
             22
                      10
                                22
                                          13
                                                    18
                                                              20
                                                                        22
  2 Brown
            15
                      25
                                 17
                                          17
                                                    24
                                                              20
                                                                        17
## 3 Green
             28
                      17
                                24
                                          23
                                                    18
                                                                        24
                                                              20
## 4 Orange 19
                      21
                                23
                                          29
                                                    26
                                                              20
                                                                        22
## 5 Red
             19
                      20
                                23
                                          19
                                                    13
                                                              20
                                                                        18
## 6 Yellow 17
                      27
                                11
                                          19
                                                    21
                                                                        17
                                                              20
```

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

```
## # A tibble: 6 x 8
##
     color
            Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 expected observed
     <chr>
            <chr>
                       <chr>>
                                 <chr>>
                                           <chr>>
                                                     <chr>>
                                                               <chr>
                                                                         <chr>>
##
## 1 Blue
             22
                       10
                                 22
                                           13
                                                     18
                                                               20
                                                                         22
             15
                       25
                                 17
                                           17
                                                     24
                                                               20
                                                                         17
   2 Brown
  3 Green
             28
                       17
                                 24
                                           23
                                                     18
                                                                         24
                                                               20
  4 Orange 19
                       21
                                 23
                                           29
                                                     26
                                                               20
                                                                         22
## 5 Red
                       20
                                 23
                                           19
                                                     13
                                                               20
                                                                         18
## 6 Yellow 17
                       27
                                 11
                                                     21
                                                                         17
                                           19
                                                               20
```

• How does the observed data compare?

Rather than looking at difference for a single level, we might look at total difference
 \(\sum_{\text{observed}} - \text{Expected} \))

- Rather than looking at difference for a single level, we might look at total difference \sum (Observed Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences
 \[\subseteq \text{Observed} \text{Expected} \]

- Rather than looking at difference for a single level, we might look at total difference
 \(\sum_{\text{(Observed}} \text{Expected} \))
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider **total absolute differences** $\sum |\mathrm{Observed} \mathrm{Expected}|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum ({\rm Observed-Expected})^2$$

8 / 21

A Statistic

- Rather than looking at difference for a single level, we might look at total difference
 \(\sum_{\text{(Observed}} \text{Expected} \))
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |\mathrm{Observed} \mathrm{Expected}|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum ({\rm Observed-Expected})^2$$

• But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\mathrm{Observed-Expected})^2}{\mathrm{st~dev}}$

- Rather than looking at difference for a single level, we might look at total difference
 \(\sum_{\text{(Observed}} \text{Expected} \))
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |{\rm Observed} {\rm Expected}|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum ({\rm Observed-Expected})^2$$

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\mathrm{Observed-Expected})^2}{\mathrm{st.dev}}$
 - The standard deviation for squared differences is approximately Expected

8 / 21

A Statistic

- Rather than looking at difference for a single level, we might look at total difference
 ∑(Observed − Expected)
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |{\rm Observed} {\rm Expected}|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum ({\rm Observed-Expected})^2$$

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\mathrm{Observed-Expected})^2}{\mathrm{st.dev}}$
 - The standard deviation for squared differences is approximately Expected
- This gives a statistic

$$\chi^2 = \sum \frac{(\mathrm{Observed} - \mathrm{Expected})^2}{\mathrm{Expected}}$$

8 / 21

A Statistic

- Rather than looking at difference for a single level, we might look at total difference
 \(\sum_{\text{(Observed}} \text{Expected} \))
- But since any negative difference in one location corresponds to a positive difference elsewhere, we might instead consider total absolute differences $\sum |{\rm Observed} {\rm Expected}|$
- Since we want one large difference to be more influential than many small differences, we look at the squared differences

$$\sum$$
 (Observed – Expected)²

- But we should also anticipate larger observations lead to larger total squared differences, so we might normalize $\sum \frac{(\mathrm{Observed-Expected})^2}{\mathrm{st.dev}}$
 - The standard deviation for squared differences is approximately Expected
- This gives a statistic

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$

• Large values of χ^2 should correspond to extreme samples

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

• But what counts as large?

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

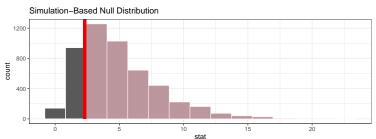
• So our statistic is much smaller than the statistics for these 5 samples.

• What is the χ^2 statistic for our observed sample?

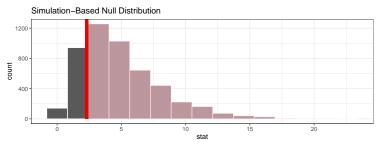
$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 samples from the theoretical population

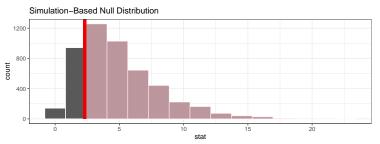
- So our statistic is much smaller than the statistics for these 5 samples.
 - But is this a fluke?



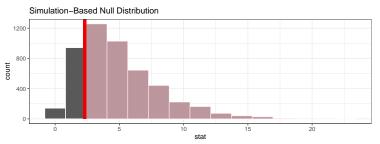
 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution



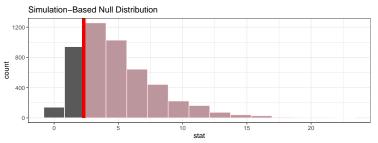
• For this data, it seems that statistics between 0 and 8 are typical.



- For this data, it seems that statistics between 0 and 8 are typical.
 - Almost no statistic is greater than 15. And NONE are greater than 20.



- For this data, it seems that statistics between 0 and 8 are typical.
 - Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2=2.3$ is very moderate



- For this data, it seems that statistics between 0 and 8 are typical.
 - Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2 = 2.3$ is very moderate
 - A statistic more extreme would occur about 80% of the time!

Using infer

• How do we find the probability that a particular χ^2 value would occur?

Using infer

- How do we find the probability that a particular χ^2 value would occur?
 - Use infer!

Using infer

- How do we find the probability that a particular χ^2 value would occur?
 - Use infer!

A tibble: 1 x 1 ## p_value ## <dbl> ## 1 0.813

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the $p \neq \frac{1}{6}$

• We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the $p \neq \frac{1}{6}$

• Our observed statistic $\chi^2=2.3$ had a simulated p-value of approximately 0.8

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the $p \neq \frac{1}{6}$

- Our observed statistic $\chi^2=2.3$ had a simulated p-value of approximately 0.8
- We do not reject H_0 at the $\alpha=0.05$ significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the $p \neq \frac{1}{6}$

- Our observed statistic $\chi^2=2.3$ had a simulated p-value of approximately 0.8
- We do not reject H_0 at the $\alpha=0.05$ significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the $p \neq \frac{1}{6}$

- Our observed statistic $\chi^2=2.3$ had a simulated p-value of approximately 0.8
- ullet We do not reject H_0 at the lpha=0.05 significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.
 - Importantly, it does not verify that colors ARE equally distributed.

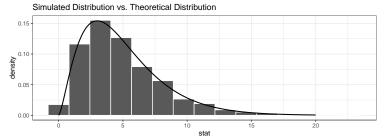
If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

• Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

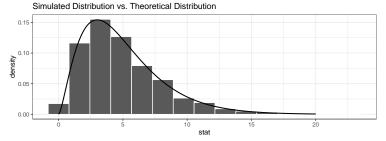
If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

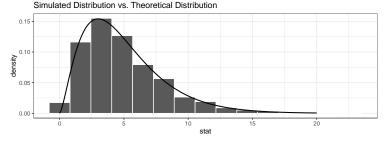
ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



 Use pchisq(q = ..., df = ..., lower.tail = F) to find the area right of the observed statistic q.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



 Use pchisq(q = ..., df = ..., lower.tail = F) to find the area right of the observed statistic q.

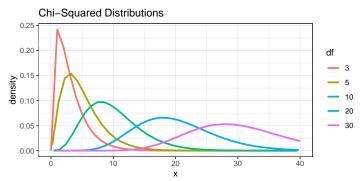
$$pchisq(q = 2.3, df = 5, lower.tail = F)$$

[1] 0.806

Nate Wells Chi-Square Math 141, 4/27/22

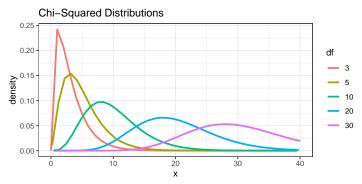
The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



The Chi-Squared Distribution

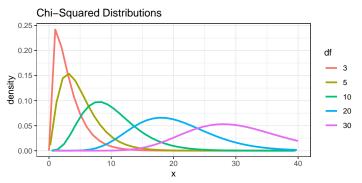
Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



ullet The mean of a chi-square distribution is df, while the standard deviation is $\sqrt{2\cdot df}$

The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



- The mean of a chi-square distribution is df, while the standard deviation is $\sqrt{2\cdot df}$
- For Chi-Squared tests, larger degrees of freedom require larger χ^2 statistics to reject H_0 .

Section 2

Chi-Square Test for Independence

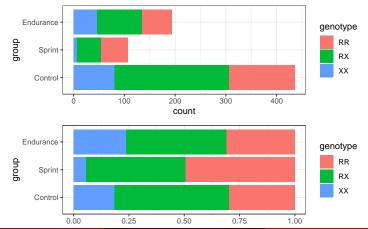
Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

• Is there an association between a genotype classification (RR, RX, or XX) and group?



Contingency Table

Consider the contingency table for group and genotype

```
table(twitch$group, twitch$genotype) %>%
                                           table(twitch$group, twitch$genotype) %>%
  addmargins()
                                             prop.table( 1)
##
                                           ##
##
                R.R.
                    R.X
                        XX Sum
                                           ##
                                                              R.R.
                                                                      R.X
                                                                             ХX
##
     Control
               130 226
                        80 436
                                           ##
                                                Control
                                                          0.2982 0.5183 0.1835
     Sprint
                53 48
                         6 107
##
                                           ##
                                                Sprint
                                                          0.4953 0.4486 0.0561
     Endurance
                60 88
                        46 194
##
                                           ##
                                                Endurance 0.3093 0.4536 0.2371
##
               243 362 132 737
     Sum
```

Contingency Table

Consider the contingency table for group and genotype

```
table(twitch$group, twitch$genotype) %>%
                                          table(twitch$group, twitch$genotype) %>%
  addmargins()
                                            prop.table( 1)
##
                                          ##
##
                R.R.
                    R.X
                        XX Sum
                                                                     R.X
                                                                            XΧ
                                          ##
                                                             R.R.
    Control
               130 226
                        80 436
##
                                               Control
                                                         0.2982 0.5183 0.1835
                                          ##
                53 48
##
     Sprint
                         6 107
                                          ##
                                               Sprint
                                                         0.4953 0.4486 0.0561
     Endurance 60 88
##
                        46 194
                                               Endurance 0.3093 0.4536 0.2371
                                          ##
##
               243 362 132 737
     Sum
```

 If group and genotype were independent, we would expect proportions to all be equal to the marginal proportions for genotype:

```
table(twitch$genotype) %>% prop.table()
##
## RR RX XX
## 0.330 0.491 0.179
```

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX			RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)	-	Control	144	214	78
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)		Endurance	64	95	35
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)		Sprint	35	52	19

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX			RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)	-	Control	144	214	78
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)			64	95	35
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)		Sprint	35	52	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Sprint	53	48	6	107
Endurance	60	88	46	194
Sum	243	362	132	737

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

	RR	RX	XX
Control	144	214	78
Endurance	64	95	35
Sprint	35	52	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Sprint	53	48	6	107
Endurance	60	88	46	194
Sum	243	362	132	737

• As before, we compute the chi-square statistic

$$\chi^2 = \sum \frac{\text{(Observed - Expected)}^2}{\text{Expected}} = 25$$

The Null Distribution

Under the null hypothesis, group and genotype are independent.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

##		ID	group	genotype	##		ID	group	genotype
##	1	1	Endurance	RX	##	1	1	Endurance	RX
##	2	2	Sprint	XX	##	2	2	Sprint	RX
##	3	3	Control	XX	##	3	3	Control	XX
##	4	4	Sprint	RX	##	4	4	Sprint	RR
##	5	5	Control	RX	##	5	5	Control	XX
##	6	6	Sprint	RR	##	6	6	Sprint	RX

Chi-Square Statistic in infer

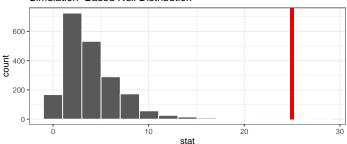
Using infer...

Chi-Square Statistic in infer

Using infer...

```
set.seed(49)
twitch_null <- twitch %>%
  specify(genotype ~ group) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 2000, type = "permute") %>%
  calculate(stat="Chisq")
twitch_null %>% visualize()+shade_p_value(obs_stat = 25, direction = "right")
```

Simulation-Based Null Distribution



0.0005

1

Using infer, the approximate p-value is

```
twitch_null %% get_p_value(obs_stat = 25, direction = "right")

## # A tibble: 1 x 1

## p_value

## <dbl>
```

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
```

```
## p_value
## <dbl>
## 1 0.0005
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1)\cdot(p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

##

1

0.0005

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
  # A tibble: 1 x 1
     p value
       <dh1>
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1) \cdot (p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
   [1] 5.03e-05
```

<dbl>

P-value and conclusions

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1)\cdot(p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5.03e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.

<dbl>

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p value
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1) \cdot (p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5.03e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?

<dbl>

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p value
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1) \cdot (p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5.03e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?
 - We'll need to further study and experiment to find out.