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In this lecture, we will. . .

• Investigate properties of the Normal Distribution
• Discuss the Central Limit Theorem and its role in statistics

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 2 / 25



The Normal Distribution The Central Limit Theorem

Outline

In this lecture, we will. . .
• Investigate properties of the Normal Distribution
• Discuss the Central Limit Theorem and its role in statistics

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 2 / 25



The Normal Distribution The Central Limit Theorem

Section 1

The Normal Distribution
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The Normal Distribution

• The general Normal density curve with mean µ and standard deviation σ is given by
the formula

f (x) = 1√
2πσ2

e−(x−µ)2/2σ Don’t memorize this
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 4?

Prob = 0.14
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

• R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

• For example, the following code computes the area left of 1.5 in the Normal
distribution with mean 0 and standard deviation 1:

pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928

Area = 0.93
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

• Answer: By computing two cumulative areas and subtracting the results!
Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991

Area = 0.93
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Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.

Area = 0.75
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• That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! qnorm(p =... , mean =... , sd =... )
qnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Scale and Translation Invariance

• Consider a Normal variable X with µ = 0 and σ = 1, and another Normal variable Y
with mean µ = 2 and σ = .25.

X

Y

0.0

0.2

0.4

0.6

0.8

−2 0 2
X

P
ro

ba
bi

lit
y

The Normal Distribution

• The distributions for X and Y have different means and different heights and
widths. . .

• But otherwise have identitical shapes!
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)
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The Normal Distribution The Central Limit Theorem

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 16 / 25



The Normal Distribution The Central Limit Theorem

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 16 / 25



The Normal Distribution The Central Limit Theorem

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 16 / 25



The Normal Distribution The Central Limit Theorem

Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Theorem
Suppose X is a Normal random variable with mean µ and standard deviation σ. Then
Z = X−µ

σ
is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It’s often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of µ and σ)

Nate Wells The Normal Distribution and CLT Math 141, 4/4/22 16 / 25



The Normal Distribution The Central Limit Theorem

Section 2

The Central Limit Theorem
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Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100
students:
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Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the
average score x̄ for each sample

• What does the distribution of sample means x̄ look like?
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The Normal Distribution

• In the previous example, the sampling distribution for each class appeared
approximately Normal, regardless of the shape of the population distribution.
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The Normal Distribution

• In the previous example, the sampling distribution for each class appeared
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Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution
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Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample
(keeping the number of samples drawn constant)?

Size 25 Size 50

Size 4 Size 10
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• As sample size increases, sampling distribution becomes more Normal, with
decreasing variance
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Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample
(keeping the number of samples drawn constant)?
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The Central Limit Theorem

Theorem
Suppose an SRS of size n is drawn from a population with mean µ and standard deviation
σ. When n is large, the sample mean x̄ is approximately Normally distributed, with mean
µ and standard deviation σ√

n .

A proof of the CLT requires more advanced techniques in probability (See Math 391). But
intuitively. . .

A sample mean is obtained by adding together INDEPENDENT values from the
population.
In order to get a very large or very small value, nearly ALL of the independent
values need to be extreme.
To get a moderate value, many can be extreme in the opposite direction, or many
can be moderate (or several variations in between).
There are more ways to obtain moderate values in an average than to obtain
extreme values
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The Normal Distribution The Central Limit Theorem

Implications for Statistics

• Regardless of the underlying population distribution, when sample size is large, the
distribution of sample means is predictable, and variance in means decreases as
sample size increases

• We can use properties of the Normal distribution to determine probabilities of
obtaining extreme sample statistics
• Statistical inference can be performed using theoretical density functions, in addition
to using simulation and bootstrapping
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