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Outline

In this lecture, we will. . .

• Use theory to find the standard error for one sample proportions
• Calculate confidence intervals and perform hypothesis tests for proportions using the
theory-based method
• Investigate the results of the lacroix taste-test
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Section 1

Inference for a Single Proportion
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The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels: A and B. Let p be the
proportion of A’s in the population.

• Suppose we randomly choose a single observation from a population, and define a
random variable X to be 1 if the observation is an A, and 0 if it is a B.
• The mean of X is p, and the standard deviation of X is

√
p(1− p) (Why?)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:
• Suppose each person in the sample has their own binary variable Xi . Then the sum

X1 + · · ·+ Xn is the number of A’s in the sample, and the mean of the Xi is the
proportion of A’s.

• By the Central Limit Theorem, if n is large, then p̂ is approximately Normal, with
mean p and standard deviation

√
p(1−p)

n
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Examples

• Below are the sampling distributions for p̂ for a variety of values of p and n, along
with the approximating Normal curve:
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Theory vs Simulation Methods

We now have two ways of making confidence intervals / performing hypothesis tests for p:
• Previously, we. . .

• constructed confidence intervals by approximating the sampling distribution through
bootstrapping, computing quantiles in the bootstrap distribution to get confidence
interval bounds.

• Performed hypothesis tests by approximating the null distribution through
permutation/simulation, calculating p-values as proportion of simulated null statistics
more extreme than the observed statistic.

• But now, using the Central Limit Theorem, we can. . .
• Construct confidence intervals using the quantiles of the Normal distribution, which can

be transformed into bounds for the confidence intervals.
• Perform hypothesis tests by obtaining p-values from probabilities in the Normal

distribution.

• Why learn two methods?
• The Theory-based method works best when modeling assumptions are true
• Simulation-based methods can perform well in a variety of circumstances, but sometimes

lack precision
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Section 2

Hypothesis Testing Procedures
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z-Scores

• The z-score for a test statistic x with standard error SE and mean µ under the Null
hypothesis is

z = x − µ
SE

• Suppose X is approximately Normal with mean µ and standard deviation σ. Then

Z = X − µ
σ

is approximately standard Normal (mean of 0, st. dev. of 1).
• By location-scale invariance,

P(X > x) = P
(
Z >

x − µ
σ

)
• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 8 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

z-Scores

• The z-score for a test statistic x with standard error SE and mean µ under the Null
hypothesis is

z = x − µ
SE

• Suppose X is approximately Normal with mean µ and standard deviation σ. Then

Z = X − µ
σ

is approximately standard Normal (mean of 0, st. dev. of 1).

• By location-scale invariance,

P(X > x) = P
(
Z >

x − µ
σ

)
• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 8 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

z-Scores

• The z-score for a test statistic x with standard error SE and mean µ under the Null
hypothesis is

z = x − µ
SE

• Suppose X is approximately Normal with mean µ and standard deviation σ. Then

Z = X − µ
σ

is approximately standard Normal (mean of 0, st. dev. of 1).
• By location-scale invariance,

P(X > x) = P
(
Z >

x − µ
σ

)

• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 8 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

z-Scores

• The z-score for a test statistic x with standard error SE and mean µ under the Null
hypothesis is

z = x − µ
SE

• Suppose X is approximately Normal with mean µ and standard deviation σ. Then

Z = X − µ
σ

is approximately standard Normal (mean of 0, st. dev. of 1).
• By location-scale invariance,

P(X > x) = P
(
Z >

x − µ
σ

)
• If we want to compute a P-Value for test statistic x , we can instead compute a
P-value for its z-score z:

P-value = P(Z > z) if Ha is one-sided right
P-value = P(Z < z) if Ha is one-sided left
P-value = 2 · P(Z > |z|) if Ha is two-sided

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 8 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

Hypothesis Tests

By the central limit theorem, if H0 : p = p0 is true, then for large n, p̂ is approximately
Normal, with the standard error

SE(p̂) =

√
p0(1− p0)

n

Theorem
To test H0 : p = p0 against Ha : p 6= p0 (or the one-sided alternative) we use the
standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

If n is large enough so that both np̂ and n(1− p̂) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 9 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

Hypothesis Tests

By the central limit theorem, if H0 : p = p0 is true, then for large n, p̂ is approximately
Normal, with the standard error

SE(p̂) =

√
p0(1− p0)

n

Theorem
To test H0 : p = p0 against Ha : p 6= p0 (or the one-sided alternative) we use the
standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

If n is large enough so that both np̂ and n(1− p̂) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.

Nate Wells Inference for a Single Proportion Math 141, 4/8/22 9 / 19



Inference for a Single Proportion Hypothesis Testing Procedures Confidence Intervals

Taste Test

• On Wednesday, Math 141 students participated in an experiment to determine
whether the typical Reed student can distinguish between two different flavors of
carbonated water.

• Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup
had a different flavor. Students were asked to identify the cup that was different.

• Null Hypothesis: flavors cannot be distinguished.
• Alternative Hypothesis: flavors can be distinguished.
• Let p denote the true proportion of the population who can correctly identify the cup
that is different.
• If H0 is true, what is the corresponding value of p?
• If Ha is true, how does the true value of p compare to the null value?

H0 : p =
1
3

Ha : p >
1
3
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Taste Test Results

• Of 59 students who performed experiment, 29 students correctly identified the
different cup (blue cup).
• Our sample statistic is p̂ = 29

59 = 0.49

• If H0 is true, the standard error for p̂ is

SE(p̂) =

√
p0(1− p0)

n =

√
0.33(1− 0.33)

59 = 0.061

• The z-score for p̂ is therefore

z = p̂ − p0
SE = 0.49− 0.33

0.061 = 2.578

• That is, the observed p̂ was 2.5 standard errors above the mean.
• This seems unlikely to occur, if the null hypothesis were true (remember, 95% of all

observations are within 2 standard errors of mean)
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observations are within 2 standard errors of mean)
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Calculate P-Value

• If H0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.

• The p-value is the probability that a standard Normal variable is larger than z = 2.578

z = 2.578
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Distribution of z−scores

• The exact p-value is
1-pnorm(q=2.578, mean = 0, sd = 1)

## [1] 0.0049687
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Conclusions

• If the two types of carbonated water were indistinguishable, we would expect that
approximately 33% of students would identify the correct cup due by random guessing.

• Moreover, we would observe a sample proportion greater than or equal to 49% only
0.5% of the time (p-value = 0.0049687)

• At a liberal significance level of α = 0.1, since p-value < α, we reject the null
hypothesis in favor of the alternative.
• This experiment provides evidence that the two flavors are indeed distinguishable

• How does this compare to the simulation results?
set.seed(48)
lacroix %>% specify(response = correct, success = "yes") %>%

hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = .5, direction = "right")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0038
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Section 3

Confidence Intervals
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Critical Values

• The critical value z∗ for a C% confidence interval is the value so that C% of area is
between −z∗ and z∗ in the standard Normal distribution

Area = C%
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Critical Values

• For Normal distributions, approximately 95% of observations are within 2 standard
deviations of the mean.
• So the critical value for 95% confidence is approximately

z∗ = 2 (exact value is z∗ = 1.96)
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Confidence Intervals

When a sample statistic is approximately Normally distribution, the C% confidence interval
is

statistic± z∗ · SE

where z∗ is the critical value for C% confidence and SE is the standard error for the
statistic.

• The standard error for a sample proportion p̂ is SE =
√

p(1−p)
n . Since we don’t know

p, we estimate it in the SE formula with p̂.

Theorem
Suppose an SRS of size n is collected from a population with parameter p. If n is large
enough so that both np̂ and n(1− p̂) are at least 10, then the confidence interval for p is

p̂ ± z∗

√
p̂(1− p̂)

n
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Taste Test Continued

• Suppose we are interested in estimating the value of p, the proportion of the
population who will correctly identify the different cup.

• Create a 90% confidence interval for this parameter.

• As before, our sample statistic is p̂ = 29
59 .

• The critical value for a 90% confidence interval is the number z∗ so that 90% area is
between −z∗ and z∗. It is the 0.95 quantile

qnorm(p = .95, mean = 0, sd = 1)

## [1] 1.644854

• The standard error for p̂ is

SE(p̂) ≈

√
p̂(1− p̂)

n =

√
0.49(1− 0.49)

59 = 0.065
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An Example

• The theory-based confidence interval takes the form
p̂ ± z∗ · SE

• In this case,
0.49± 1.64 · 0.065 or 0.49± 0.1066

• That is, a plausible range of values for p is 0.38 to 0.60, with confidence 90%.
• How does this compare to the bootstrap method?

set.seed(84)
lacroix %>% specify(response = correct, success = "yes") %>%

generate(reps=5000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .9, type = "percentile")

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.390 0.593
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Reflections on Experiment Design

• Reflection on Experiment Design:

• Why did we ask students to identify which of 3 cups was different, rather than giving 2
unmarked cups (1 lemon, 1 lime) and asking students to identify which is lime?

• Why would observing p̂ < 0.33 be unlikely under both the null and alternative
hypotheses?
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